MIPS

by Imagination

MIPS® Architecture for Programmers
Volume IV-j: The MIPS32® SIMD
Architecture Module

Document Number: MD00866
Revision 1.12
February 3, 2016

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies.
All rights reserved.

MIPS;Y

Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘asis’, without any warranty of any kind.

Template: nB1.02, Built with tags: ARCH FPU_PS FPU_PSandARCH MIPS32

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Contents

[T-T o3 (=T g T Y o Yo T UL I 1= = o T 12
3 R Y/ o ToTo [=T o] g Toz= TN @7 T V=Y o1 oo < U OTR 12
1 0 A £ =V T 1= USSP 13

L 2 o (o I 1=« USSR 13

L IS 00T 1= =Y PP 13

1.2: UNPREDICTABLE and UNDEFINEDcoouiiiiiiii ittt st smee e e sne e e eneeas 13
1.2.1: UNPREDICTABLE ...ttt ettt ettt e bt e e bt e e e n b e e e mbe e e anbe e e snbeeaernbeeeanneeean 13
1.2.2: UNDEFRINED ...ttt ettt ettt ettt et e e e eae e e e s ae e e e emee e e aabeeeambe e e embeeeenbeeenbeeeanneaean 14
T.2.80 UNSTABLE ...ttt ettt ekt e e bt e e sat e e e eae e e e ambe e e eabe e e ambe e e aanee e e nbeeeanbeeeanneeaan 14
1.3: Special Symbols in Pseudocode NOTAtIONcoiuiiiiiie e 14
LR S Lo TV o £ 1) (o] 4= L1 (] o IR 17
Chapter 2: Guide to the Instruction Set..........ccocimriiiii e ——— 18
2.1: Understanding the INStruCtoN FIelASeeiii it 18
2 O T [1= 0 o o o T =1 o P 19
2.1.2: Instruction Descriptive Name and MNemMONIC.uuiiiriiiiiiieiiiiieee et 20

2 O S o) ¢ g = U = [P 20

P B S T g oo 1= 1= [PO RPPR 21

P2 IR B LY Yot q o] 1] o I =Y o SRR 21
2.1.6: RESICHONS FIEIA. ...ttt e e st e e s e nbb e e e s annnneeas 21
2.1.7:0PEIatioN FIEI. ... et e s nnae s 22
2.1.8: EXCEPLONS FIIA. ...ttt e bbbt e e st e e e e s e e e e e annne s 22
2.1.9: Programming Notes and Implementation Notes Fields. ... 23
2.2: Operation Section Notation and FUNCHONSuiiiiiiii et 23
2.2.1: InStruction EXECULION OFGEIINGeiiiiiiiiiie ittt ettt et e e e s e e e s bbb e e e e s annneeas 23
2.2.2: PSEUAOCOAE FUNCLIONS.eeiiiiiiiiiii ettt ettt e ettt e e s nn et e e e et e e e s annnee e e e s annneeeas 23
2.3: Op and Function Subfield NOTAtION..........oueiiii e e e s sbee e e 32
P2 e O Vg (0T o) P 32
Chapter 3: The MIPS32® SIMD ArchiteCture.........ccccceriiiiiiissmmmmnrsirsssssssssssssssssssssssmsssssssssssssssssssssssssns 34
T I O 1YY oV TR 34
3.2: MSA SOftWAIE DELECHION ...ttt ettt et e bt e e ab e e e ane e e e anbeeesnneeeas 35
3.3: MSA VECTIOr REGISIEIS ...ttt ettt sttt et e s b et e e be e e e st e e snb e e e anbe e e snbeeeas 35
3.3.1: REQISTEIS LAYOULoeeiiiiiiei ettt e et e e s e e e e e s e e e e s e s n e e e nnre s 36
3.3.2: Floating-Point Registers MappiNguviiiiiiieieeiiie et 38
3.4: MSA CONEIOl REGISTEIS ...ttt ettt e e b et e e be e e e be e e e anb e e e ann e e e anbeeennbeeeas 39
3.4.1: MSA Implementation Register (MSAIR, MSA Control Register 0)........cccooiiieeeiniiiieeeiiiieee e 40
3.4.2: MSA Control and Status Register (MSACSR, MSA Control Register 1)........ccccooveriieieniieciiieeee 41
3.4.3: MSA Access Register (MSAAccess, MSA Control Register 2).........cccoieiiiiiiiiieieniee e 45
3.4.4: MSA Save Register (MSASave, MSA Control Register 3).......ccocviiiiiiiiiiieiiee e 46
3.4.5: MSA Modify Register (MSAModify, MSA Control RegiSter 4)..........ocueeiiiieiiiii i 46
3.4.6: MSA Request Register (MSARequest, MSA Control Register 5)oevvviiiiieiiiiiiiiiieiiiee e 47
3.4.7: MSA Map Register (MSAMap, MSA Control REQISLEr 6)ccoiuviiieiiiiiiiee e 47
3.4.8: MSA Unmap Register (MSAUnmap, MSA Control Register 7).........coceiiiiiieiiiiciee e 48
TR = (oT=T o] 1] o 1= SO PP RP P OPPPRPPPOPPPPPN 49
3.5.1: Handling the MSA Disabled EXCEPLONcociiiiiiieiiiii ettt 50
3.5.2: Handling the MSA Floating Point EXCEPLIONc.coiiiiiiiiii e 50

3 MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.5.3: NAN Propagation........ccooiuieiiieiiiiie ettt e et e s s e e e e s e s 53
3.5.4: Flush to Zero and Exception SignaliNgcoceeiiiiiiiiiieiie e 54
362 INSTIUCTION SYNTAX ..ttt e ekt h et e e s st e e e s b e e e st et e e sb et e ann e e eanbeeesnneeeas 54
3.6.1: Vector Element SEIECHONcoiiii e 55
3.6.2: LOAA/SIOrE OffSEESutiiiiiiiiiiii ettt 55
3.6.3: INSTrUCHION EXAMPIESttt e e e e e e e st e et e e e e e e e e e s e e aeeeeeaaeeas 56
B.7: INSTIUCHION ENCOTING ..ttt et e e e e s e e e e s n et e e s e anr e et e e s eannee e e e s arrreeenaas 57
3.7.1: Data Format and INdeX ENCOINGouuriiiiiiieie et 57
B.7.2: INSTIUCHION FOMMALSeeiiiiiiiii ettt e st e e s e e e s a e e e e s nnneeas 59
3.7.3: INStruction Bit ENCOTINGceeiiiiiiiiiiiiiiiiie ittt e e e e e s e e e e s annne s 62
Chapter 4: The MIPS32® SIMD Architecture Instruction Set..........ccoocccmmriiiiiiniscnneer . 74
4.1: INStruCtion St DESCHIPHONS ...ttt bt e bt e e s s be e e e bt e e e nbeeesneeeaanbeeesnneaeas 74
4.1.1: Instruction Set SUMMAry By Categoryoooiiii i 74
4.1.2: Alphabetical List Of INSTTUCHIONS.......coiuuiiiii it 79

F N] W | PR RUPPRRIN 80
F N 1S T W | PSPPSRI 82
F N DS T T | PRSI 84
F N 1S T U X« | PR UUTUUSRURIN 86
F N] o | PRSP 88
F N 1B o | PP UPPRRIN 89
AN LV ettt bt e bt e hee e oMt e e R Ee e e oabe e e aREe e e o beeeeRe e e e be e e e aReeeeheeeeanbeeaanteeeanbeeeanneaeas 90
ANDILB ettt h e et ee e a et e ea bt e e aR b e e e oA bee e e bt e e e be e e e aheeeaaheeeeanbeeaanteeeanbeeeanneeeas 91
F TS Ko | S TP RUSRURIN 92
F NS U o | PSRRI 94
F Y S T | PR USRUPSRRIN 96
F Y O X | PR UURUSRRIN 97
F Y S T | PR SUURUSRRRIN 98
AVER U ettt ettt et ettt ekt e oo a bt e e e bt e e an b ee e e bee e e Reeeeanteeeneeeeaneeeeanteeeanreeeaneaeas 99
10 I o | SRR 100
=10 I T X | SRR 101
] 1\ o | SRR 102
] 1\ X | SRR 103
=] 1N LS o o | SRR 104
2] 1 ST T o | SRR 105
1Y 2 S 106
1Y N S 107
] 720 SR 108
1Y 7 1 PSR P SRR 109
] AN o | OSSP PSRRI 110
BINE G Af e e e n et e n e e e nr e r e e nne e nes 111
BN Z . e e e e ettt enr e e e ne e e e r e s nnre e nes 112
BINZL Ve e e R et e e e et e et aa et e nr et e e ne e nr e e e anre e nes 113
B O E L.V ettt e e et e e e e et e R et e e R et e e R et e aree e e ne e e nr e e e nnneeenes 114
B E LI B ettt et e n R e et e nr e e e nn e e e r e e e anreeenes 115
= 15T = I | ST U SR PP RR PP 116
= 15T = I o | RO SU RO PP 117
= Ao | OO PP U RO PR PR 118
BV oo oo e R e et e e et e a et e e et e nr e e e e an e e e e r e e ann e e nes 119
(O 2o | PP PP PRPPPRRPPPRN 120
(0= @ o | PP PP PP PRPRPPRPPPIN 121
(0 011 PP RSP P PPUPRPROPRRPPPRN 123
(O I S N o | OO P PP PP PP PPPPTPRPPPPN 125
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 4

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

(O I U | OO U RSP R ORPPRTORRPR 126

(O I TS o | TP P U P RO PR PR 127
(O] I X | PSP OO PO PR PR 129
(O] I I T | TS TP OO PR OR PR OR PR 131
(0] I I U o | TSP OO P R OR PR ORRRPR 132
(O I S | PSP O PO RSP ORRPR 133
(0 I T O« | TP U RO P OSSP ORRPR 135
(010 S o | TP P TR UR O P RO PRT PR 137
(010 A U | ST U RO P R OR PO 138
(O @17 7 TSRO PR OR PR OR PR 139
DS T o | TP U RO PR ORI OPRORTOPRTPI 141
DIV UG e e e 142
DL I S e | USSP P U RO PR URTRURPORRRPRPPI 143
DIOTP UG e ettt b b ettt ettt R e e R e h et b e et e bt e nn e reenneenneea 145
DIPADD S .0 ..ot et a e E e h e b e e et e a e nn e reenneenreeas 147
DPADD _ULf . e 149
DIP SUB _S.AF ..ttt a e r e h e bt h e st e reenneenreeas 151
DPSUB _ULAF .. ettt sttt e st ettt a e h e bt b e s reenneeanee s 153
FADD .. e s 155
(07 o | OSSP TP UU RSP R URFRURTOUTOPRPPI 156
O E QO e e h et h e R e a e e R e e et e bt e st e e reenneenreeas 157
FOLAS S A .ttt e e et h e e b n e h e nn et eenaneenreeas 158
O I | TSP U PP RSP R UURRURPORROPRPPPI 159
O I o | OSSP TP PRSP PR URTTUROURRPRPPI 160
01N e | OO TP TR OO RTORRRURTORRRPRPPI 161
(010] e | OO PP URO PR ORR PSP OPPOPRPPI 162
FOUEQLAR ..ttt b bt e a et sa e et e e s et e et e e s he e et e e et et e b e e et e e bt e nan e e s beenaneenreens 163
FOULE.F ..ttt e a et e a e et e st et e e s b et e a e e e b e e e b e e s e e e bt e s e e beenaneenreens 164
[O1U I o | TSP TP U PR URFTURPTOUPRPRPPI 166
FOUN LI ettt b e b e e a et s et e bt e s et e e et e e e et et e e ea et e be e san e e se e st e e beenaneenneens 167
FOUNEE . Qf ..ttt b b a ettt e b e st e e et e e e et e bt e eb et e b e e e et e beesane e beenaneenneeas 168
L A | OO OO PP TP 169
FEXD O .Af ..ottt bbbttt e e h et a e eh et bt a e nne e tnenneenreens 170
) N | OO OO PPN 171
FEXUPLLAL e e s b e s sre e s e e e e s e s e e 172
FEXUPR.AL . e st e e s e s e e s e s e e 173
| I T | T TS TR U PP U PO PR UPFTPRPTORPRPRPPI 174
A O o | OO 175
L]I | T O ST P TP O U PP R UPPTPRPOPPRPRPPI 176
L@] e TSP P U PO U PSP PP UPFTPRTOUPRPRPPI 177
| N OO P PR OPURON 178
FLOG2.AFottt bbb et e bt e ettt e e e et Rt e e bt e b e e et bt et teenaneenree s 179
FIMADD AR .. ettt e e s e e r e s e e s e e 180
L G | PO OO PP 181
T G W o | PO PP ORI 182
1\ e | OO ST P PRROPRRO 183
FIMIIN A O e e e s e s r e e e m e e s e e s s m e e e s me e e s nee e s eaeeeenes 184
FIMISUB LT .. et e e e e s e s e s s e e e s n e e e s e e e s e e eannas 185
Y1 1o) OO UR PP PR 186
{07 o | OO OO PPN 187
N e | OO OO P PR TP 188
FR S QIR T O e e e s s e e e e e e e e e e e 189
LYY e | OO OO PPN 191

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

ST = @ e | SO PP RO P R ORI PRORTOPRPPI 192

LIS I e | U UPPRRRPN 193
LIS I I | PR USPPRUPPN: 194
LIS NN =0 | U PUPPRURPN 195
LIS 1O T T | PP SRPPRRRPN: 196
RIS T I I | PR USPPRURPN: 197
RIS 1= I | P UPURRRPPRURPN 198
RIS =T e | PP RPPRRRPN 199
LIS U e | P URRSPPRURPN 200
LIS U] e | R RSPPRUPPN: 202
RISV | U SPPRRRRN 203
RIS N o | P PSRPPRRPPN 204
L I A S T | PPN 205
L A O Ko | PR USPPRRREUPINt 206
L O T | PR PPRRRRN 207
LI R LN (O T | PSPPI 209
LI R LN (O O e | PP RPRRRRN 210
L VoY 1D TS T | PRSPPI 211
[V2N B U o | U PTUPPRRRRUPINt 212
[ES LU = T W | PRI 213
[ES 1= U X | P SPPRRRRN 214
Y N o | U RTUPPRRRRUPIN 215
| | U RTUPPRRR PPNt 217
|] o | PPN 219
Y = o | O RTPPPRRREPPINt 221
1IN S == T I | U RPRRRRN 223
1IN RSN o | RPN 224
[o | S UPTUPPRRREUPINt 225
I] o | SRR 227
LS A ettt ettt ettt a—.—————————aeeeeeeeeeeeeeeeeeteteeteteeerte——————————————————ieieseeeseeeeteetererrrrerrrerrrntes 228
Y AN T I | 229
Y AN T] T o | 231
1Y AN] B AV o | OSSR 233
Y T G AW | USRS 234
S T | 236
1Y 7 G U o | USSP 238
A S T | 240
1Y 7 I U o | OO EPRR 242
LY N | USSR 244
Y TN TS T | 246
LY LN A N | OO EPRR 248
YA LTS T | 250
LY AN L N OO EPRR 252
1YL] S T | 254
1Y/ (0] O | 255
1Y (O LY 256
1Y/ EST 01 T X | 257
Y510 7 = T X o | PR 259
1Y 510 Yo | PR 261
1Y O o | R 262
1Y 1O O o | PR 263
1Y 1O Yo | SR 265
N1 I 1O | PR 266
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 6

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

N R .V ettt a ekt e o bt e oa et e o b e e 4o R e £ oo R et 4o AR e e e R et e e R b et e eh R et e e b ee e e ne e e e b re e e anneeenes 270
(O T (= O ST U SR PPPPPPRON 271
(O TSP U PRSP PTSUPPOUPRRPPIO 272
L0 {10 TP OSSPSR OPRPPTPP 273
O (Y | O PSR T SR TPPPPPRN 274
(01 1(0] B o | ST U SRS PPPPOPPRN 276

L N o | OO U SR OPPPPPPRON 278
7 B T | TP ST UPRP PPN 279
7 B U o | ST TP POPPPTRPPR 281
] e | TP PP P PPRTO 283
]I o | S TP UPPP PP 284
]I | o | PO PP PP 286

S]I N | PRSP TP RO 288
]I o | PO PTPPPOPR 289
] L I | P ST TP RPN 290
] I I X | ST 291
] 2T N | TP 292
] 27 Y e | PO 293
] T H o | PSRRI 294
] T Y e | PSR P O TPRPPR 296
] T o | ST PR 298
] T o | TP R PR 299
] T W | TP PPOPR 300
] T o | TR POPR 302
S} e | PSR P U RROPR 304
10 S T T | PRSP R PR 306
10 S T U o | ST UUPUPROPR 308
1010 U 1S U o | USRI 310
101 S U U S e | USROS 312
1012 o | S USRS 314
181V Ko) ST 315

RV AS] o | | SRR RTSURR PRI 316

D (O] T RPN 318

D (O] I = R PTSUURTPRPPI 319
Appendix A: Vector Registers Partitioningcccccvemmmmmimniiissssennnssssss s nsssssssen 320
LW Y= or (o gl m =T o] (=TSR 1Y =T o] o] T PRSPPI 320
A.2: Saving/Restoring Vector Registers on Context SWItCheoiiiiiiiiiiiii e 321
A.3: Re-allocating Physical Vector REGISIEISooiiiiiiiii e 323
A.4: Heuristic for Vector Register AlIOCAtION.ooiiiiii e 323
Appendix B: ReViSion HiStOrY ... s s ssssssss s s nssssssssnssnns 324
7 MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

List of Figures

Figure 2.1: Example of INStruction DESCHPLIONuiiiiiiiiiiie et e e e et e e e s e st e eeesanbaeeaeeans 19
Figure 2.2: Example Of INSTrUCHION FIEIAS..........oii i e e e e e 20
Figure 2.3: Example of Instruction Descriptive Name and MNemONICooooiiiiiiiiiiiii e 20
Figure 2.4: Example Of INStrUCtiON FOIMAL.........cooiiiiiiiiiii e e e e e e 20
Figure 2.5: Example of INSTrUCHION PUMDOSE ... e e e e 21
Figure 2.6: Example of INStruction DESCHPIONuiiiiiiiiiiiii e e e e e 21
Figure 2.7: Example of Instruction ReSIHCHONSuuiiiiiiiiii e 22
Figure 2.8: Example of INStruction OPErationoiiiiiiiiie ittt et e e e e sntee e e e s esnbeeeeesanbeeeaeeans 22
Figure 2.9: Example of INStruction EXCEPLIONueiiiiiiiiieie e e e 22
Figure 2.10: Example of Instruction Programming NOTESc.uuiiiiiiiiiiii e 23
Figure 2.11: COP_LW PseudoCOde FUNCHONcoitiiiiiieieee ettt ie e snn e e e e e 24
Figure 2.12: COP_LD Pseudocode FUNCHONcoitiiiiiieiieee ettt e s snne e e e e 24
Figure 2.13: COP_SW PSeudoCOde FUNCHONciuiiiiiiieiieie ittt ettt et be e e s sae e e s snne e e snne e e 24
Figure 2.14: COP_SD Pseudocode FUNCHONoiuiiiiiiiiiieie ettt e e 25
Figure 2.15: CoprocessorOperation Pseudocode FUNCHONcoiuiiiiiiiiiiie e 25
Figure 2.16: AddressTranslation Pseudocode FUNCHONccuiiiiiiiiiiec e 25
Figure 2.17: LoadMemory PSeudocode FUNCHONoiuiiiiiiiiiiec et 26
Figure 2.18: StoreMemory PSeudoCode FUNCHONeiiiiiiiiiiieiiie ettt 26
Figure 2.19: Prefetch PSeudocode FUNCHON............uiiii i 27
Figure 2.20: SyncOperation PSeudocode FUNCHONooiiiiiiiiiiiiiii et 28
Figure 2.21: ValueFPR PSeUdOCOAE FUNCHION..........iiiiiiiiiie ittt e e s sn e ee e 28
Figure 2.22: StoreFPR Pseudocode FUNCHONouiiiiiiii ettt 29
Figure 2.23: CheckFPEXxception Pseudocode FUNCHONcoiiiiiiiiiiiiii e 30
Figure 2.24: FPConditionCode Pseudocode FUNCHON.........c.cii ittt 30
Figure 2.25: SetFPConditionCode Pseudocode FUNCHONciiiiiiiiiiiiiiec e 30
Figure 2.26: SignalException Pseudocode FUNCHONccciiiiiiiiiiic et 31
Figure 2.27: SignalDebugBreakpointException Pseudocode FUNCHONcoocuiiiiiiiiiiiiie e 31
Figure 2.28: SignalDebugModeBreakpointException Pseudocode FUNCHON...........cuviiiiiiiiieiiie e 31
Figure 2.29: NullifyCurrentinstruction PseudoCode FUNCHONooiiiiiiiiii e 32
Figure 2.30: JumpDelaySlot PSeudocode FUNCHONcoiiiiiiiiiieiie e 32
Figure 2.31: PolyMult PSEUAOCOAE FUNCHIONooiviiiiiiiieee et e e 32
Figure 3-1: Config3 (CPO Register 16, Select 3) MSA Implementation Present Bit.............cccoooeeiiiiiiiiiciiicnn 35
Figure 3-2: Config5 (CPO Register 16, Select 5) MSA Enable Bitc..ooiiiiiiiiiiiii e 35
Figure 3-3: MSA Vector Register Byte EIEMENTSccouiiiiiii it 36
Figure 3-4: MSA Vector Register Halfword EIEMENTSc.oiiiiiiiiie e 36
Figure 3-5: MSA Vector Register Word EIEMENTS........couiiiiiiiiiie ettt eae et 36
Figure 3-6: MSA Vector Register Doubleword EIEMENTSccocuiiiiiiiiiiiie e 36
Figure 3-7: MSA Vector Register as 2-ROW BYtE AITAYc.eiiiiiiiiiieiei ettt 37
Figure 3-8: MSA Vector Register as 4-ROW BYte AITAYc.eiiiiiiiiiiiieiie ettt 37
Figure 3-9: MSA Vector Register as 8-ROW BYtE AITAYc.eiiiiiiiiiiiiiiie ettt 37
Figure 3-10: FPU Word Write Effect on the MSA Vector Register (Statuspr Set)ocvviiviiiiiic 39
Figure 3-11: FPU Doubleword Write Effect on the MSA Vector Register (Statusgg set)cocoevciiiiiiiiiien 39
Figure 3-12: FPU High Word Write Effect on the MSA Vector Register (Statusgg set) ..o 39
Figure 3-13: MSAIR Re@iSter FOMMALcooiiiiiiiie it anee e e 40
Figure 3-14: MSAIR Register Field DeSCHPHONScciiiiiiiiii ittt anb e 41
Figure 3-15: MSACSR RegISTEr FOMMAL.........ei ittt ann e e 41
Figure 3-16: MSACSR Register Field DESCHPIONSeiiiieieiiii ettt snn e sne e 42
9 MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Figure 3-17: MSAACCESS ReQIStEr FOIMAL.......ciiuiiiiiiii ittt rnne e sne e 46
Figure 3-18: MSASave Register FOMMAL.........ooiiiiiii e anb e 46
Figure 3-19: MSAModify RegISter FOIMAL........oouiiiiiiiiiiii et 47
Figure 3-20: MSARequest RegiSter FOMMAL........cooiiiiiiiiiiiiie ittt nr e 47
Figure 3-21: MSAMaP ReQiStEr FOIMALueiiiiiiiitii ettt ettt s e s sae e e s anne e e snne e e 48
Figure 3-22: MSAMap Register Field DeSCIPHONSiiiiiiie it 48
Figure 3-23: MSAUNMApP ReIStEr FOIMAL.........uiiiiiiiiiiiie ettt snr e 48
Figure 3-24: MSAUnmap Register Field DeSCIPONSccuiiiiiiiiiiie e 49
Figure 3-25: Output Format for Faulting Elements when NX is Set..........cooiiiiiiiiiiiii e 50
Figure 3.26: MSACSRCause Update PSEUAOCOMEccocueiiiiiiiiitiieiiiee ettt ee sttt et e e nnneeeenns 52
Figure 3.27: MSACSRFlags Update and Exception Signaling PSEUdOCOdE.cccuieiiiiiiniiiiiiee e 53
Figure 3-28: SOUICe VECIOr SWT VAIUES ...c..ueiiiiiiiiieiie ettt st be et be e et eseeeenbeesneeenbeesnes 56
Figure 3-29: SOUICe VECIOr SW2 VAIUESeeiiieiiiieiie ettt ettt ettt et ae e st e e s he e emte e eneeenbeeaneeenneeanes 56
Figure 3-30: SOUICE GPR $2 VAIUEooiuiiiiie ittt ettt ettt et e be e e me e e be e et e e saeeseeesneeennee e 56
Figure 3-31: Destination Vector $w5 Value for ADDV.W INStrUCHONocueiiiiiiiiiiieiiee e 56
Figure 3-35: Destination Vector $w9 Value for DOTP_S INStrUCONueeiiiiiieiiieiee e 57
Figure 3-32: Destination Vector $w6 Value for FILL.W INSTrUCONooiiiiieiiiiie e 57
Figure 3-33: Destination Vector $w7 Value for ADDVIL.W INSrUCHONcc.eiiiiiiiiiiie e 57
Figure 3-34: Destination Vector $w8 Value for SPLAT.W INStrUCHONeiiiiiiiiiii e 57
Figure 3-36: 18 INSTrUCHION FOMMAL.........eiiiiiieiii et e s sn e e e e ar e e e s eann e e e e s an e e eeeaas 60
Figure 3-37: 15 INSTrUCHION FOMMAL.........eiiii it e e n e e e e an e e e s e s e e e e s an e e eenaa 60
Figure 3-38: BIT INSTrUCTION FOIMALceiiiiiiiie et e s e s e e e e s anreeeeeaa 60
Figure 3-39: [10 INSTrUCION FOIMAL.........oiiiiiiie et e et e e e e s e e e e eas 60
Figure 3-40: 3R INSIIUCTION FOIMALooiiiiiieii et e e e b e e e s e s e e e e s anreeeeeaas 60
Figure 3-41: ELM INSTrUCHION FOIMALooiiiiiiiiiii ettt et e e s e e e e s an e eee e 61
Figure 3-42: 3RF INSIrUCHION FOIMMAL.......ooiiiiiiiie et e e e e s e e e e e s anrneeeeaas 61
Figure 3-43: VEC INSTrUCHON FOIMALeiiiiiiiiiii ettt sttt st e b b e e s et e e e smte e e snneeeanes 61
Figure 3-44: MIT10 INSTIUCTION FOIMAL......coiiiiiiiiie et e e s e e e e e ann e e e e s anrneeeeaas 61
Figure 3-45: 2R INSTIUCTION FOIMALooiiiiiiiie e b e e e e e e e e s b e e e e e aas 61
Figure 3-46: 2RF INSIrUCHION FOMMAL.......ooiiiiiiiii e e et e e e e e e e s snbneeeeaa 62
Figure 3-47: Branch INStrUCHON FOMMALuiiiiiiiie e e e en e e e 62
Figure 3.48: Sample Bit ENCOAING TaDIEcooiiiiiiiiiee ettt sne e e 63
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 10

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements.........ccooiiiiiiiiiiiiiei e 14
Table 2.1: AccessLength Specifications for LOAAS/STOreSeciiiiiiiiiiiiiii e 27
Table 3.1: Word Vector Memory RepreSentationcueeiiiiiiiiiiiiie et 38
Table 3.2: MSA CONrol REGISTEIScoiiiiiiiiieiiie ettt ettt e e s b e e s be e e et e e e e anb e e e anbe e e anbeeeanneas 40
Table 3.3: Cause, Enable, and Flag Bit Definitionsccooiiiiii i 44
Table 3.4: Rounding Modes DefiNItiONSoiiiiiiiiiii e e 45
Table 3.5: MSA Exception Code (EXCCOUE) VAIUEScueiiiiiiiie ettt ettt e e e e eneee e e e 50
Table 3.6: Default Values for Floating Point EXCEPLIONSooiiiiiiiii e 51
Table 3.7: Default NaN ENCOGINGS.......coiiiiiiiiiiiiiiee et e e e e e e e e e e e e e e s e an e e e e e nnes 52
Table 3.8: Data Format ADDreviationsooo e 55
Table 3.9: Valid EIement INAeX VAIUESoooo it e e 55
Table 3.10: Two-bit Data Format Field ENCOTINGcooviiiiiiiiiiee et 58
Table 3.11: Halfword/Word Data Format Field ENCOTING........ccuueiiiiiiiiii it 58
Table 3.12: Word/Doubleword Data Format Field ENCOTING........cccuuiiiiiiiiiiiieiiee et 58
Table 3.13: Data Format and Element Index Field ENCOAINGcuuiiiiiiiiiiiiiiiic e 58
Table 3.14: Data Format and Bit Index Field ENCOAINGcuiiiiiiiiiiiieiiie e 58
Table 3.15: Symbols Used in the Instruction ENCOding TabIes.........cooiiiiiiiiiiiiieieeiee e 63
Table 3.16: MIPS32 Encoding of the Opcode Field...........c.uiiiiiiiiiiiiiie ettt 64
Table 3.17: MIPS32 COP1 Encoding of rs Field for MSA Branch INStruCtions............ccccoeviiiniiiie e 64
Table 3.18: Encoding of MIPS MSA MIinor Opcode Fieldooiiiiiiiiiiiii it 65
Table 3.19: Encoding of Operation Field for MI10 Instruction FOrmats...........coccovviiiiiiiii e 65
Table 3.20: Encoding of Operation Field for 15 Instruction FOrmatccccoeeiiiiiiiii i 66
Table 3.21: Encoding of Operation Field for 18 Instruction FOrmatcccceeiiiiiiii i 67
Table 3.22: Encoding of Operation Field for VEC/2R/2RF Instruction FOrmats...........ccccveviiiieeeeniiieee e 67
Table 3.23: Encoding of Operation Field for 2R Instruction FOrmats..........cccoooiiiiiii i 67
Table 3.24: Encoding of Operation Field for 2RF Instruction Formats............coccvviiiiiiiiii e 68
Table 3.25: Encoding of Operation Field for 3R Instruction FOrmat..........ccccceeiiiiiiiii i 69
Table 3.26: Encoding of Operation Field for ELM Instruction FOrmat..........ccccoociiiiiiiiiiii e 70
Table 3.27: Encoding of Operation Field for 3RF Instruction Format.............ccooooiiiiiiiiiii e 71
Table 3.28: Encoding of Operation Field for BIT Instruction FOrmMat..........cceeviiiiiiiiii i 72
Table 4.1: MSA Integer Arithmetic INSTIUCHIONSooiiiiiie e e a e 74
Table 4.2: MSA BitwiSe INSIIUCTIONSccicuiiiieeiiiiiie ettt e e e e st e e e e e st e e e e e e snnee e e e e anreeeeeennes 75
Table 4.3: MSA Floating-Point Arithmetic INStrUCHIONScc.viiiii e 76
Table 4.4: MSA Floating-Point Non Arithmetic INStrUCLIONSocciiiiiii e 77
Table 4.5: MSA Floating-Point Compare INSTIUCHIONSeiiiiiii i 77
Table 4.6: MSA Floating-Point Conversion INSTIUCHONS.iiiiiiiiiiec e 78
Table 4.7: MSA Fixed-Point INSTIUCHONSoiiiiiiiie i e e e e e e et e e e e e ebeeeeeesnreeeeeanes 78
Table 4.8: MSA Branch and Compare INSTIUCHONSccoiuiiiiiiii et 78
Table 4.9: MSA Load/Store and MOVE INSTIUCHIONSciiiiiiiiiie et a e e e enee e e 79
Table 4.10: MSA Element Permute INSTIUCHIONSooiuiiiii ettt e a e e e enree e e e 79
Table 4.11: Base ArchiteCture INSITUCLIONS i e e e e e e e e e e 79
Table A.1: Physical-to-Thread Context Vector Register Mapping (Hardware Internal)...........ccccooviieiiiiiiinienenee 320
Table A.2: Updated Physical-to-Thread Context Vector Register Mapping (Hardware Internal)............cccoeuveee..e. 321
Table A.3: Context Mapping Table (OS INtEINAI)cooi it aee e e rnaee e 321
Table A.4: Register Usage Table (OS INTEINAL) ...c..eeiiiiiiiiiie ettt be e e 322
Table A.5: Updated Context Mapping Table (OS INterNal)oooiiiiiiiiiiiiie e 322
Table A.6: Updated Register Usage Table (OS INternal).........cc.oo oo 323
11 MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 1

About This Book

The MIPS® Architecture for Programmers Volume 1V-j: The MIPS32® SIMD Architecture Modul e comes as part of
amulti-volume set.

» Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microM1PS32™ Architecture

* Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set
* Volume II-B provides detailed descriptions of each instruction in the microMI1PS32™ instruction set

e Volume Il describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in aMIPS® processor implementation

* Volume IV-adescribes the MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume IV-b describes the MDMX™ A pplication-Specific Extension to the MIPS64® Architecture and
microMI1PS64™. [t is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDM X is deprecated. MDMX and MSA can not be implemented at the same
time.

e Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture

* Volume I1V-d describes the SmartM1PS®A ppli cation-Specific Extension to the MIPS32® Architecture and the
microM1PS32™ Architecture .

* Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

* Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

* Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture
* Volume IV-i describesthe MIPS® Virtualization Module to the MIPS® Architecture

* Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.2 UNPREDICTABLE and UNDEFINED

1.1.1 ltalic Text

is used for emphasis

is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmabl e fields and registers), and various floating point instruction formats, such as S, D,
and PS

is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

represents aterm that is being defined

isused for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

is used for ranges of numbers; the range isindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel ow.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructionsin
aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable hit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged

software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which isinaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessiblein the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 13

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

« UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause dataloss.

UNDEFINED operations or behavior has one implementation restriction:
« UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

thereisno exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE valueresultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

* Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
I Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
0oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy. 2 Selection of hitsy through z of hit string x. Little-endian bit notation (rightmost bit is 0) isused. If y isless
than z, this expression is an empty (zero length) bit string.
+, - 2's complement or floating point arithmetic: addition, subtraction
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 14

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
*, o0 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwiselogicad XOR
and Bitwiselogical AND
or Bitwiselogical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at |eft-hand-side)
GPRLEN Thelength in bits (32 or 64) of the CPU general -purpose registers
GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[X] is a short-hand notation for SGPR[SRSCtl-gs, X].
SGPR[s,X] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general -purpose regis-
ters may be implemented. SGPR([s,X] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[z,x,s] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[z,X] Coprocessor unit z, control register x
CP2CCRI[x] Coprocessor unit 2, control register x
COCIz] Coprocessor unit z condition signal
Xlat[x] Trandation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem X OR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This featureis available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRrg and User mode).

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

15

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I+n:,
I-n:

Thisoccurs as aprefix to Operation description lines and functions asalabel. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction 1, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled 1+1.

The effect of pseudocode statements for the current instruction labelled 1+1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take placein order. However, between sequences of statementsfor dif-
ferent instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC valueisonly visible indirectly, such aswhen the processor stores the restart
address into a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register on an
exception. The PC value contains a full 32-bit address all of which are significant during a memory refer-
ence.

ISA Mode

In processors that implement the MIPS16e Application Specific Extension or the microM I PS base architec-
tures, the ISA Mode is asingle-bit register that determines in which mode the processor is executing, as fol-
lows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing M11PS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value isonly visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the |SA Modeinto a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS

The number of physical address bitsimplemented is represented by the symbol PABITS. Assuch, if 36 phys-
ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pytes,

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

16

1.4 For More Information

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU
has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
aly in MIPS32 Release? and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in

any FPR.

In MIPS32 Release 1 implementations, FP32RegistersMode is always a0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs asif it were a MIPS32 implementation. In
such a case FP32RegisterMode is computed from the FR bit in the Status register. If thisbit isa0, the pro-
cessor operates asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
falseif abranch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of abranch or jump.

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL.: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 17

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

http://www.mips.com/
mailto:architecture@mips.com

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in a phabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

“Instruction Fields’ on page 19

“Instruction Descriptive Name and Mnemonic” on page 20
“Format Field” on page 20

“Purpose Field” on page 21

“Description Field” on page 21

“Restrictions Field” on page 21

“Operation Field” on page 22

“Exceptions Field” on page 22

“Programming Notes and Implementation Notes Fields’ on page 23

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

18

2.1 Understanding the Instruction Fields

Figure 2.1 Example of Instruction Description

g‘:;?ric;'t?:e“ﬂ‘lmon'% Example Instruction Name EXAMPLE
EXAMPLE
Instruction encoding 31 26 25 21 20 16 15 11 10 6 5 0
1 Ny | oA [: ’ o | Exaune
000000 00000 000000
6 5 5 5 5 6

Architecture level at which

instruction was defined/redefined \

/7 Format: EXAMPLE fd,rs,rt MIPS32
Assembler format(s) for each
definition

/-V Purpose: Example Instruction Name
Short description

To execute an EXAMPLE op.

Symbolic description ——> Description: GPR [rd] « GPR[r]s exampleop GPR[rt]

Full description of > This section describes the operation of the instruction in text, tables, and illustrations. It
instruction operation includes information that would be difficult to encode in the Operation section.

Restrictions on instruction ~ Restrictions:

and operands
This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

High-level language. ————>> Operation:

description of instruction

operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. x/
temp <« GPR[rs] exampleop GPR[rt]

GPR [rd] <« temp

Exceptions that = Exceptions:
instruction can cause

A list of exceptions taken by the instruction

Notes for programmers I~ Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Notes for implementors — |~ Implementation Notes:

Like Programming Notes, except for processor implementors

2.1.1 Instruction Fields

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 19

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.1 Understanding the Instruction Fields
Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

» Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant valuesin afield are shown in binary below the symbolic or hexadecimal value.

» All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

» Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs ft rd 0 ADD
000000 00000 100000
6 5 5 5 5 6

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude al instructionsin pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

Format: ADD fd,rs,rt MIPS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the |lowercase names of the appropriate fields. The architectural level at
which the instruction was first defined, for example “MIPS32" is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 20

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.1 Understanding the Instruction Fields

The assembler format lines sometimes include parenthetical commentsto help explain variationsin the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

2.1.5 Description Field

If aone-line symbolic description of theinstruction isfeasible, it appearsimmediately to the right of the Description
heading. The main purpose is to show how fieldsin the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

Description: GPR[rd] « GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

» |If the addition resultsin 32-bit 2's complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» |f the addition does not overflow, the 32-bit result is placed into GPR rd.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “ CP1 register

fd” isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” isthe floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

» Vdidvaluesfor instruction fields (for example, see floating point ADD.fmt)

ALIGNMENT requirements for memory addresses (for example, see LW)
» Vaidvalues of operands (for example, see ALNV.PS)

» Vaid operand formats (for example, see floating point ADD.fmt)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 21

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.1 Understanding the Instruction Fields
» Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).
» Vaid memory accesstypes (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

Restrictions:

None

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. Thisformal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

Operation:

temp <« (GPR[rsl;;||GPR[rsls; o) + (GPR[rtls;||GPRIrtls; o)
if temp;, # temp;; then
SignalException (IntegerOverflow)
else
GPR [rd] <« temp
endif

See 2.2 “Operation Section Notation and Functions’ on page 23 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception
Exceptions:

Integer Overflow

Aninstruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 22

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not nec-
essary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes
Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 23

» “Pseudocode Functions’ on page 23

2.2.1 Instruction Execution Ordering

Each of the high-level language statementsin the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:
» “Coprocessor Genera Register Access Functions’ on page 23
e “Memory Operation Functions’ on page 25
e “Floating Point Functions’ on page 28
e “Miscellaneous Functions’ on page 31

2.2.2.1 Coprocessor General Register Access Functions
Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
genera registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and

how a coprocessor suppliesaword or doubleword is defined by the coprocessor itself. Thisbehavior isabstracted into
the functions described in this section.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 23

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-

word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-

tents of memdouble in coprocessor general register rt.
Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */
endfunction COP_LD
COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 2.13 COP_SW Pseudocode Function

dataword <« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */
endfunction COP_SW
COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-

order doubleword in coprocessor general register rt.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 24

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

Figure 2.14 COP_SD Pseudocode Function
datadouble « COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value
/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop fun value to coprocessor z */
endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword isthe smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the foll owing functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit of
memory (word for 32-hit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function trandates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceis to Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual addressisin one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required trandation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 25

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: 1Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais
returned in afixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference isuncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the accesstypeiscached but the datais not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy aload reference. At aminimum, this
block isthe entire memory element.

Figure 2.17 LoadMemory Pseudocode Function
MemElem <« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */

/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* VvAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory
The StoreMemory function stores a value to memory.

The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the datafor an aligned,
fixed-width memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytesin memory will actu-
aly be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 26

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

/* CCA:
/*

2.2 Operation Section Notation and Functions

Cacheability&Coherency Attribute, the method used to access */
caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem:
/*

/*

/*

/*

/*

/* pAddr:
/* vAddr:

Data in the width and alignment of a memory element. */

The width is the same size as the CPU general */

purpose register, either 4 or 8 bytes, */

aligned on a 4- or 8-byte boundary. For a */
partial-memory-element store, only the bytes that will be*/
stored must be valid.*/

physical address */

virtual address */

endfunction StoreMemory

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* pAddr: physical address */

/* vAddr: virtual address */

/* DATA: 1Indicates that access is for DATA */

/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

Table 2.1 AccessLength Specifications for Loads/Stores

SyncOperation

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

The SyncOperation function orders loads and stores to synchronize shared memory.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 27

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

This action makes the effects of the synchronizable |oads and stores indicated by stype occur in the same order for al
processors.

Figure 2.20 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it isvalid to interpret the value in that format (but not to interpret it in adifferent format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function

value <« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* S, D, W, L, Pg, */

/* OB, QH, */

/* UNINTERPRETED WORD, */

/* UNINTERPRETED DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1l and SDCl */

case fmt of
S, W, UNINTERPRETED WORD:
valueFPR « FPR[fpr]

D, UNINTERPRETED DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fpry # 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR « FPR[fpr+ll;; , || FPRIfprl;; .
endif
else
valueFPR « FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 28

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

else

valueFPR « FPR[fpr]

endif

DEFAULT:
valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown bel ow specifies the way a binary encoding representing aformatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

StoreFPR

/*
/*
/*
/*
/*
/*
/*

/*
/*

fpr:
fmt:

value:

Figure 2.22 StoreFPR Pseudocode Function

(fpr, fmt, value)

The FPR number */

The format of the data, one of: */

S, D, W, L, PS, */

OB, QH, */

UNINTERPRETED WORD, */

UNINTERPRETED DOUBLEWORD */

The formattted value to be stored into the FPR */

The UNINTERPRETED values are used to indicate that the datatype */
is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED WORD:
FPR [fpr] <« value

D, UNINTERPRETED DOUBLEWORD:

if (FP32RegistersMode = 0)
if (fpry, # 0) then
UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE’? || value;;
FPR [fpr+1] < UNPREDICTABLE>? | valuegs 3,
endif
else
FPR [fpr] <« value
endif
L, PS:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR [fpr] <« value
endif
endcase
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 29

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

endfunction StoreFPR

The pseudocode shown bel ow checks for an enabled floating point exception and conditionally signals the exception.
CheckFPException
Figure 2.23 CheckFPException Pseudocode Function
CheckFPException ()
/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSR,7 = 1) or
((FCSRy¢. .15 and FCSRyq) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
Figure 2.24 FPConditionCode Pseudocode Function
tf <-FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then
FPConditionCode <« FCSR;;
else
FPConditionCode < FCSR,,,cc

endif
endfunction FPConditionCode
SetFPConditionCode
The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode (cc, tf)
if cc = 0 then

FCSR « FCSR3y 4 || tf || FCSRyy
else
FCSR <« FCSR31. .25+cc | | tf | | FCSR23+cc. .0

endif

endfunction SetFPConditionCode

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 30

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.2 Operation Section Notation and Functions

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException
The Signal Exception function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument : A exception-dependent argument, if any */

endfunction SignalException

SignalDebugBreakpointException

The Signal DebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException
SignalDebugModeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while aready running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
NullifyCurrentinstruction
The NullifyCurrentlnstruction function nullifies the current instruction.

Theinstruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
killsthe instruction in the delay slot of the branch likely instruction.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 31

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.3 Op and Function Subfield Notation

Figure 2.29 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction
JumpDelaySiot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in ajump delay slot. A jump delay slot always immedi-
ately follows aJr, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function
JumpDelaySlot (vAddr)
/* vAddr:Virtual address */
endfunction JumpDelaySlot
PolyMult
The PolyMult function multiplies two binary polynomial coefficients.
Figure 2.31 PolyMult Pseudocode Function

PolyMult (x, V)

temp « O
for i in 0 .. 31
if x; = 1 then
temp « temp xor (y(si-i)..0 || 0%
endif
endfor

PolyMult <« temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asingle field has both fixed and variable subfields, so the name con-

tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such asfs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-

case.

For the sake of clarity, an aliasis sometimes used for avariable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase since it refersto a

variable subfield.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 32

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

2.4 FPU Instructions

Bit encodings for mnemonics are given in Volume, in the chapters describing the CPU, FPU, MDM X, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 32 for a description of the op and function subfields.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 33

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 3

The MIPS32® SIMD Architecture

The MIPS® SIMD Architecture (MSA) module adds new instructions to the industry-standard MIPS Release 5
(“R5”) architecture that allow efficient parallel processing of vector operations. This functionality is of growing
importance across a range of consumer electronics and enterprise applications.

In consumer electronics, while dedicated, non-programmable hardware aids the CPU and GPU by handling
heavy-duty multimedia codecs, there is a recognized trend toward adding a software-programmable solution in the
CPU to handle emerging applications or a small number of functions not covered by the dedicated hardware. In this
way, SIMD can provide increased system flexibility, and the MSA isideal for these applications.

However, the MSA is not just another multimedia SIMD extension. Rather than focusing on narrowly defined instruc-
tions that must have optimized code written manually in assembly language in order to be utilized, the MSA is
designed to accel erate compute-intensive applications in conjunction with leveraging generic compiler support.

A wide range of applications— including data mining, feature extraction in video, image and video processing,
human-computer interaction, and others — have some built-in data parallelism that lends itself well to SIMD. These
compute-intensive software packages will not be written in assembly for any specific architecture, but rather in
high-level languages using operations on vector data types.

The MSA module was implemented with strict adherence to RISC (Reduced I nstruction Set Computer) design princi-
ples. From the beginning, MIPS architects designed the MSA with a carefully selected, simple SIMD instruction set
that is not only programmer- and compiler-friendly, but also hardware-efficient in terms of speed, area, and power
consumption. The simple instructions are also easy to support within high-level languages, enabling fast and simple
development of new code, as well as leverage of existing code.

This chapter describes the purpose and key features of the MIPS32® SIMD Architecture (MSA).

3.1 Overview

The MSA complements the well-established MIPS architecture with a set of more than 150 new instructions operat-
ing on 32 vector registers of 8-, 16-, 32-, and 64-hit integer, 16-and 32-hit fixed- point, or 32- and 64-bit float-
ing-point data elements. In the current release, MSA implements 128-bit wide vector registers shared with the 64-bit
wide floating-point unit (FPU) registers.

In multi-threaded implementations, MSA allows for fewer than 32 physical vector registers per hardware thread con-
text. The thread contexts have access to as many vector registers as needed, up to the full 32 vector registers set
defined by the architecture. When the hardware runs out of physical vector registers, the OS re-schedul es the running
threads or processes to accommodate the pending requests. The actual mapping of the physical vector registers to the
hardware thread contexts is managed by the hardware.

The M SA floating-point implementation is compliant with the IEEE Standard for Floating-Point Arithmetic

754™.2008. All standard operations are provided for 32-bit and 64-bit floating-point data. 16-bit floating-point stor-
age format is supported through conversion instructions to/from 32-bit floating-point data. In the case of afloat-

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 34

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.2 MSA Software Detection
ing-point exception, each faulting vector element is precisely identified without the need for software emulation for
all vector elements.

For compare and branch, MSA uses no global condition flags: compare instructions write the results per vector ele-
ment as al zero or all one bit values. Branch instructions test for zero or not zero element(s) or vector value.

MSA isbuilt on the same principles pioneered by MIPS and its earlier MDMX (MIPS Digital Media eXtension): a
simple, yet very efficient instruction set. The opcodes allocated to MDMX are reused for MSA, which means that
MDMX is deprecated at the time of the release of MSA.

MSA requires a compliant implementation of the MIPS32 Architecture, Release 5 or later.
3.2 MSA Software Detection

The presence of MSA implementation isindicated by the Config3 MSAP hit (CPO Register 16, Select 3, bit 28) as
shown in Figure 3-1. MSAP hit is fixed by the hardware implementation and is read-only for the software. The soft-
ware may determine if the MSA isimplemented by checking if the MSAP hit is set. Any attempt to execute MSA
instructions must cause a Reserved Instruction Exception if the MSAP hit is not set.

Figure 3-1 Config3 (CPO Register 16, Select 3) MSA Implementation Present Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
L msae [T PP PP PP PP dd

Config5 MSAEnN bit (CPO Register 16, Select 5, bit 27), shown in Figure 3-2, is used to enable the MSA instructions.
Executing a M SA instruction when MSAER bit is not set causes a M SA Disabled Exception, see Section
3.5.1 “Handling the M SA Disabled Exception”. The reset state of the MSAER bit is zero.

Figure 3-2 Config5 (CPO0 Register 16, Select 5) MSA Enable Bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
(L[[msaef [T T I T PIIITIT Il

3.3 MSA Vector Registers

The MSA operates on 32 128-bit wide vector registers. If both MSA and the scalar floating-point unit (FPU) are pres-
ent, the 128-bit MSA vector registers extend and share the 64-bit FPU registers. MSA and FPU can not be both pres-
ent, unless the FPU has 64-bit floating-point registers.

MSA vector register have four data formats: byte (8-bit), halfword (16-bit), word (32-bit), doubleword (64-bit). Cor-
responding to the associated data format, a vector register consists of a number of elementsindexed from 0 to n,

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 35

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.3 MSA Vector Registers
where the least significant bit of the 0" element is the vector register bit 0 and the most significant bit of the nh de-
ment is the vector register bit 127.

When both FPU and MSA are present, the floating-point registers are mapped on the corresponding M SA vector reg-
isters as the 0 elements.

3.3.1 Registers Layout

Figure 3-3 through Figure 3-6 show the vector register layout for elements of all four data formats where [n] refersto
the n'" vector element and MSB and LSB stand for the element’s Most Significant and Least Significant Byte.

Figure 3-3 MSA Vector Register Byte Elements

127 120 119 112 111 104 103 96 95 88 87 80 79 72 71 64 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 O

BRI s EE ey

Figure 3-4 MSA Vector Register Halfword Elements

127 112 111 96 95 80 79 64 63 48 47 32 31 16 15 0
(7] (6] (3] (4] (3] (2 (1] [
MSB | LSB | MSB | LSB | MSB | LSB | MSB | LSB | MSB | LSB | MSB | LSB | MSB | LSB | MSB | LSB

Figure 3-5 MSA Vector Register Word Elements

127 96 95 64 63 32 31 0
[3] [2] [1] (0]
MSB ‘ ‘ ‘ LSB | MSB ‘ ‘ ‘ LSB MSB‘ ‘ ‘ LSB MSB‘ ‘ ‘ LSB

Figure 3-6 MSA Vector Register Doubleword Elements

127 64 63 0
(1] (0]
we| | [[| [[eme] | | [[[[
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 36

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.3 MSA Vector Registers

The vector register layout for dlide instructions SLD and SLDI is a 2-dimensional byte array, with as many rows as
bytesin the integer dataformat. For byte data format, the 1-row array is reduced to the vector shown in Figure 3-3.
For halfword, the byte array has 2 rows (Figure 3-7), there are 4 rows for word (Figure 3-8), and 8 rows (Figure 3-9)
for doubleword data format.

Figure 3-7 MSA Vector Register as 2-Row Byte Array

63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 O
(151 | [14] | [a3] | [12] | [11] | [10] | [9] | [8]
(7] 6] (9] (4] (3] (2 | [| [

Figure 3-8 MSA Vector Register as 4-Row Byte Array

31 24 23 16 15 8 7 O
[15] [14] [13] [12]
(11 | [10] | [9 (8]

(7] (6] (9] (4]
(3] (2] (1 (]

Figure 3-9 MSA Vector Register as 8-Row Byte Array

15 8 7 0

[15] | [14]
[13] | [12]
[11] | [10]
@ | (8
(71 | [6]

(9] (4]
(3] (2]
(1] (0]

MSA vectors are stored in memory starting from the 0" element at the lowest byte address. The byte order of each
element follows the big- or little-endian convention as indicated by the BE bit in the CPO Config register (CPO Regis-
ter 16, Select 0, bit 15). For example, Table 3.1 shows the memory representation for aM SA vector consisting of
word elementsin both big- and little-endian mode.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 37

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.3 MSA Vector Registers

Table 3.1 Word Vector Memory Representation

Little-Endian Byte Big-Endian Byte

Word Vector Element Address Offset Address Offset
Byte[0] / LSB 0 3
Word Byte [1] 1 2
0 Byte[2] 2 1
Byte[3] / MSB 3 0
Byte[0] / LSB 4 7
Word Byte[1] 5 6
(1 Byte[2] 6 5
Byte[3] / MSB 7 4
Byte[0] / LSB 8 11
Word Byte[1] 9 10
(2] Byte[2] 10 9
Byte[3] / MSB 11 8
Byte[0] / LSB 12 15
Word Byte [1] 13 14
(3] Byte[2] 14 13
Byte[3] / MSB 15 12

3.3.2 Floating-Point Registers Mapping

The scalar floating-point unit (FPU) registers are mapped on the MSA vector registers. To facilitate register data shar-
ing between scalar floating-point instructions and vector instructions, the FPU is required to use 64-bit floating-point
registers operating in 64-bit mode. More specifically:

» |f MSA and FPU are both present, then the FPU must implement 64-bit floating point registers, i.e. bits
Config3ysap and FIRgg4 (CP1 Control Register O, bit 22) are set.

* If MSA and FPU are both present, then the FPU must be compliant with the |EEE Standard for Floating-Point
Arithmetic 754™.-2008, i..e. the read-only bits FCSRyan2008 @d FCSRags200s (CP1 Control Register 31,
bits 18 and 19) are set.

* MSA instructions are not enabled while the FPU (Coprocessor 1) is usable and operates in 32-bit mode. i.e. bit
Statusc; (CP Register 12, Select 0, bit 29) is set and bit Statusgr (CP Register 12, Select 0, bit 26) is not set.

Any attempt to execute M SA instructions with Statusc; Set and Statusgg clear will generate the Reserved
Instruction exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 38

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.4 MSA Control Registers

When Statusgg is set, the read and write operations for the FPU/M SA mapped floating-point registers are defined as

follows:

A read operation from the floating-point register r, wherer =0, ..., 31, returns the value of the element with
index 0 in the vector register r. The element’s format is word for 32-bit (single precision floating-point) read or
double for 64-bit (double precision floating-point) read.

A 32-bit read operation from the high part of the floating-point register r, wherer =0, ..., 31, returns the value of
the word element with index 1 in the vector register r.

A write operation of value V to the floating-point register r, wherer =0, ..., 31, writes V to the element with
index 0 in the vector register r and all remaining elementsare UNPREDICTABLE. Figure 3-10 and Figure 3-11
show the vector register r after writing a 32-bit (single precision floating-point) and a 64-bit (double precision
floating-point) value V to the floating-point register r.

A 32-bit write operation of value V to the high part of the floating-point register r, wherer =0, ..., 31, writesV to
the word element with index 1 in the vector register r, preserves word element 0, and all remaining elements are
UNPREDICTABLE. Figure 3-12 shows the vector register r after writing a 32-hit value V to the floating-point

register r.

Changing the Statusgg value renders all floating-point and vector registers UNPREDICTABLE.

Figure 3-10 FPU Word Write Effect on the MSA Vector Register (Statusgg set)

127

96 95

64 63

32 31

UNPREDICTABLE

UNPREDICTABLE

UNPREDICTABLE

Word value V

Figure 3-11 FPU Doubleword Write Effect on the MSA Vector Register (Statusgg set)

127

64 63

UNPREDICTABLE

Doubleword value V

Figure 3-12 FPU High Word Write Effect on the MSA Vector Register (Statusgg set)

127

96 95

64 63

32 31

UNPREDICTABLE

UNPREDICTABLE

Word value V

Unchanged

3.4 MSA Control Registers

The control registers are used to record and manage the MSA state and resources. Two dedicated instructions are pro-
vided for this purpose: CFCM SA (Copy From Control M SA register) and CTCM SA (Copy To Control MSA regis-
ter). The only information residing outside the MSA control registers is the implementation bit Config3,gap and the

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

39

3.4 MSA Control Registers

enable bit ConfigSy,sagn discussed in Section 3.2 “MSA Software Detection”.

There are 8 MSA control registers. See Table 3.2 for a summary and the following sections for the complete descrip-
tion.

Table 3.2 MSA Control Registers

Access Mode
Name Index Read/Write Description
MSAIRygp=1 | MSAIRygp=0
MSAIR 0 User mode accessible, not privileged Read Only Implementation
MSACSR 1 User mode accessible, not privileged Read/Write Control and status
MSAAccess 2 Privileged Reserved Read Only Available vector registers mask
MSASave 3 Privileged Reserved Read/Write Saved vector registers mask
MSAModify 4 Privileged Reserved Read/Write Modified (written) vector registers mask
MSARequest 5 Privileged Reserved Read Only Reqguested vector registers mask
MSAMap 6 Privileged Reserved Read/Write Mapping vector register index
MSAUnmap 7 Privileged Reserved Read/Write Unmapping vector register index

3.4.1 MSA Implementation Register (MSAIR, MSA Control Register 0)

Compliance Level: Required if MSA isimplemented
Access Mode: Not privileged, user mode accessible

The MSA Implementation Register (MSAIR) isa 32-bit read-only register that contains information specifying the
identification of MSA. Figure 3-13 shows the format of the MSAIR; Figure 3-14 describes the MSAIR fields.

The software can read the MSAIR using CFCM SA (Copy From Control MSA register) instruction. If the
multi-threading module is present, all thread contexts share one MSAIR register instance.

Figure 3-13 MSAIR Register Format

31 25 24 23 18 17 16 15 8 7 o
O ..
0000000000000 WRP ProcessorlD Revision
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 40

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.4 MSA Control Registers

Figure 3-14 MSAIR Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:17 Reserved for future use; reads as zero and must be writ- RO 0 Reserved
ten as zero.
WRP 16 Vector Registers Partitioning. R Preset Required
Using vector registers partitioning MSA allows for mul-
tithreaded implementations with fewer than 32 physical
vector registers per hardware thread context.
Encoding Meaning
0 Vector registers partitioning not
implemented.
1 Vector registers partitioning imple-
mented.
ProclD 15:8 Processor ID number R Preset Required
Rev 7.0 Revision number R Preset Required

3.4.2 MSA Control and Status Register (MSACSR, MSA Control Register 1)

Compliance Level: Required if MSA isimplemented
Access Mode: Not privileged, user mode accessible

The MSA Control and Status Register (MSACSR) is a 32-bit read/write register that controls the operation of the
MSA unit. Figure 3-15 shows the format of the MSACSR; Figure 3-16 describesthe MSACSR fields.

The software can read and write the MSACSR using CFCM SA and CTCMSA (Copy From and To Control MSA
register) instructions. If the multi-threading module is present, each thread context hasits own MSACSR register
instance.

Floating Point Control and Status Register (FCSR, CP1 Control Register 31) and MSA Control and Status Register
(MSACSR) are closely related in their purpose. However, each serves a different functional unit and can exist inde-
pendently of the other.

Figure 3-15 MSACSR Register Format

31 25 24 23 22 21 20 19 18 17 12 11 7 6 2 1 0

0
00000000

FS| 0 | Impl 0 |NX Cause Enables Flags RM

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 41

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Figure 3-16 MSACSR Register Field Descriptions

3.4 MSA Control Registers

Fields

Name Bits

Description

Read/
Write

Reset State

Compliance

0 31:25

Reserved for future use; reads as zero and must be writ-
ten as zero.

RO

0

Reserved

FS 24

Flush to zero. If not implemented, reads as zero and
writes are ignored.

Every input subnormal value and tiny non-zero result is
replaced with zero of the same sign. See Section

3.5.4 “Flush to Zero and Exception Signaling”.

Encoding Meaning

0 Input subnormal values and tiny
non-zero results are not altered.
Unimplemented Operation Exception
may be signaled as needed.

1 Replace every input subnormal value
and tiny non-zero result with zero of
the same sign. No Unimplemented
Operation Exception is signaled.

R/W

Optional

Reserved for future use; reads as zero and must be writ-
ten as zero.

RO

Reserved

Impl 22:21

Available to control implementation dependent features.

Undefined

Optional

0 20:19

Reserved for future use; reads as zero and must be writ-
ten as zero.

RO

0

Reserved

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

42

3.4 MSA Control Registers

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

NX

18

Non-trapping floating point exception mode.

In normal exception mode, the destination register is not
written and the floating point exceptions set the Cause
bits and trap.

In non-trapping exception mode, the operations which
would normally signal floating point exceptions do not
write the Cause bits and do not trap. All the destination
register’s elements are set either to the calculated results
or, if the operation would normally signal an exception,
to signaling NaN values (see Section 3.5.2 “Handling
the MSA Floating Point Exception”) with the least sig-
nificant 6 bits recording the specific exception type
detected for that element in the same format asthe Cause
field. The Flags bits are updated for all floating-point
operation with an |EEE exception condition that does
not result in aM SA floating point exception (i.e., the
Enable bit is off).

Encoding Meaning

0 Normal exception mode

1 Non-trapping exception mode

R/W

0

Required for
floating-point

Cause

17:12

Cause hits.

These bits indicate the | EEE exception conditions that
arise during the execution of all operationsin avector
floating-point instruction. A bit isset to 1 if the corre-
sponding exception condition arises during the execution
of any operation in the vector floating-point instruction
and is set to O otherwise. The exception conditions
caused by the preceding vector floating-point instruction
can be determined by reading the Cause field.

Refer to Table 3.3 for the meaning of each hit.

R/W

Undefined

Required for
floating-point

Enable

11:7

Enable hits.

These hits control whether or not a exception is taken
when an |EEE exception condition arises for any of the
five conditions. The exception is taken when both an
Enable bit and the corresponding Cause bit are set either
during the execution of any operation in vector float-
ing-point instruction or by moving avalue to MSACSR
or one of its alternative representations. Note that Cause
bit E (Unimplemented Operation) has no corresponding
Enable bit; the non-IEEE Unimplemented Operation
Exception is defined by MIPS as always enabled.

Refer to Table 3.3 for the meaning of each bit.

R/W

Undefined

Required for
floating-point

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

43

3.4 MSA Control Registers

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

Flags

6:2

Flag bits.
Thisfield shows any exception conditions that have

R/W

Undefined

Required for
floating-point

occurred for all operations in the vector floating-point
instructions completed since the flag was last reset by
software. When afloating-point operation raises an

| EEE exception condition that does not result inaMSA
floating point exception (i.e., the Enable hit is off), the
corresponding hit(s) in the Flags field are set, while the
others remain unchanged. Arithmetic operations that
result in afloating point exception (i.e., the Enable hit is
on) do not update the Flags bits. This field is never reset
by hardware and must be explicitly reset by software.
Refer to Table 3.3 for the meaning of each bit.

RM

1.0

floating point operations (Some operations use a specific
rounding mode).

Refer to Table 3.4 for the meaning of the encodings of
thisfield.

Rounding Mode. R/W 0 Required for
This field indicates the rounding mode used for most floating-point

Table 3.3 Cause, Enable, and Flag Bit Definitions

Bit Name

Bit Meaning

E

Unimplemented Operation.
This bit exists only in the Cause field.

Invalid Operation.

The Invalid Operation Exception issignaled if and only if thereis no usefully definable result. In
these cases the operands are invalid for the operation to be performed.

Under default exception handling, i.e. when the Invalid Operation Exception is nhot enabled, the
default floating-point result is a quiet NaN (see Table 3.6).

Divide by Zero.

The Divide by Zero Exceptionissignaled if and only if an exact infinite result is defined for an
operation on finite operands.

Under default exception handling, i.e. when the Divide by Zero Exception is not enabled, the
default result is an infinity correctly signed according to the operation (see Table 3.6).

Overflow.

The Overflow Exception issignaled if and only if the destination format’s largest finite number is
exceeded in magnitude by what would have been the rounded floating-point result were the expo-
nent range unbounded.

Under default exception handling, i.e. when the Overflow Exception is not enabled, the overflowed
rounded result (see Table 3.6) is delivered to the destination. In addition, the Inexact bit in the
Causefield is set.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

44

3.4 MSA Control Registers

Table 3.3 Cause, Enable, and Flag Bit Definitions

Bit Name

Bit Meaning

u

Underflow.

If enabled, the Underflow Exception is signaled when atiny non-zero result is detected after

rounding regardless of whether the rounded result is exact or inexact.

Under default exception handling, i.e. when the Underflow Exception is not enabled, the rounded

result (see Table 3.6) is delivered to the destination and:

« |f the rounded result is inexact, the Inexact bit in the Cause field is set.

« If therounded result is exact, no hit in the Flags field is set. Such an underflow condition has no
observable effect under default handling.

Inexact.

Unless stated otherwise, if the rounded result of an operation isinexact -- that is, it differs from
what would have been computed were both exponent range and precision unbounded -- then the
Inexact Exception is be signaled.

Under default exception handling, i.e. when the Inexact Exception is not enabled, the rounded
result is delivered to the destination (see Table 3.6).

Table 3.4 Rounding Modes Definitions

RM Field
Encoding

Meaning

0

Round to nearest / tiesto even.
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (that is, even)

Round toward zero.
Rounds the result to the value closest to but not greater in magnitude than the result.

Round towards positive / plusinfinity.
Rounds the result to the value closest to but not |ess than the resullt.

Round towards negative / minus infinity.
Rounds the result to the value closest to but not greater than the resullt.

3.4.3 MSA Access Register (MSAAccess, MSA Control Register 2)

Compliance Level: Required for vector registers partitioning (i.e. MSAIR\yrp Set), otherwise Reserved
Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Accessregister (MSAAccess) isa 32-bit read-only register specifying which of the 32 architecturally

defined vector registers WO, ..., W31 are available to the software. Figure 3-17 shows the format of the MSAAccess.
Vector register Wn, wheren =0, ..., 31, isavailable and can be used only if MSAAccess,y,, bit is set. Thereset state

of the MSA Accessregister is zero.

The software can read the MSAAccess using CFCMSA (Copy From Control MSA register) instruction. If the

multi-threading module is present, each thread context has its own MSAAccess register instance.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

45

3.4 MSA Control Registers

To get access to vector register Wn, n =0, ..., 31, the software writesn to MSAMap. Wn is mapped to an available
physical register and MSAAccessy,, is set. To free up an already mapped vector register Wn, the software writesn
to MSAUnmap. Wn is unmapped and MSAAccessy,, cleared.

The total number of vector registers mapped at any time can not exceed the number of physical registersimple-
mented.

Figure 3-17 MSAAccess Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
W(W W W WWWWWWWWWWWWWWWWWWWWWWWWWW W W
31(30|29(28|27(26|25|24|23|22|21{20|19|18|17|16|15|14|13|12|11|10/ 9|8 |7 |6 |54 |3 |2 |1|0

3.4.4 MSA Save Register (MSASave, MSA Control Register 3)

Compliance Level: Required for vector registers partitioning (i.e. MSAIR\yrp Set), otherwise Reserved
Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Saveregister (MSASave) isa 32-bit read/write register specifying which of the 32 architecturally defined
vector registers WO, ..., W31 have not been saved after a software context switch. Figure 3-18 shows the format of
the MSASave. Thereset state of the MSA Save register is zero.

The software can read and write the MSASave using CFCM SA and CTCMSA (Copy From and To Control MSA
register) instructions. If the multi-threading module is present, each thread context hasits own MSASave register
instance.

If both bit MSAAccessyy,, and bit MSASavey,, are set, wheren =0, ..., 31, then register Wn has to be saved on
behalf of the previous software context and restored with the value corresponding to the current context.

Figure 3-18 MSASave Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
WIWW W WWWWWWwWWWWwWWwWWWwWWwWWwWwWwWwWwwwwWwwwwww W
31/30129|28|27|26|25|24|23/22|/21|20/19|18|17|16|15|14|13|12/11|10/ 9|8 | 7|6 |54 3|2 |1| 0

3.4

.5 MSA Modify Register (MSAModify, MSA Control Register 4)

Compliance Level: Required for vector registers partitioning (i.e. MSAIR\yrp Set), otherwise Reserved
Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Modify register (MSAModify) is a 32-bit read/write register specifying which of the 32 architecturally
defined vector registers WO, ..., W31 have been modified (written). Figure 3-13 showsthe format of the MSAModify.
The reset state of the MSA Modify register is zero.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 46

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.4 MSA Control Registers

The software can read and write the MSAModify using CFCM SA and CTCMSA (Copy From and To Control MSA

register) instructions. If the multi-threading module is present, each thread context has its own MSAModify register
instance.

MSAModify is updated by the hardware when the execution of each MSA or FPU instruction completes. The update
isalogical or operation, i.e. hardware updates never clear any bitsin MSAModify register.

If bit MSAModifyyy,, isset, wheren =0, ...31, then the software has been granted access to and has modified register
Whn since the last time the software cleared bit n.

Figure 3-19 MSAModify Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
W W wWwwwwwwwwwwwwwwwwwwwwwwwwwww w W
31|30|29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10/ 9|8 |7|6|5|4|3|2|1| 0

3.4.6 MSA Request Register (MSARequest, MSA Control Register 5)

Compliance Level: Required for vector registers partitioning (i.e. MSAIR\yrp Set), otherwise Reserved
Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Request register (MSARequest) is a 32-hit read-only register specifying which of the 32 architecturally
defined vector registers WO, ..., W31 the current MSA or FPU instruction has requested access to but are not yet
available, i.e. MSAAccesy,, is clear, or are not yet saved, i.e. MSASave,y,, is set. Figure 3-13 shows the format of
the MSARequest. Thereset state of the MSA Request register is zero.

The software can read the MSARequest using CFCM SA (Copy From Control M SA register) instruction. If the
multi-threading module is present, each thread context has its own MSARequest register instance.

MSARequest is set by the hardware for each MSA or FPU instruction with all vector registers the instruction will
access in either read or write mode. MSARequest is aways cleared before setting the bits for the current MSA or
FPU instruction.

Figure 3-20 MSARequest Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

5 0
WIWWWwwwwwwwwwwwwwwwwwwwwwwwwwww W
31/30(29|28|2726|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11/10| 9|8 | 7|6 |5 0

N
w
N
B

3.4.7 MSA Map Register (MSAMap, MSA Control Register 6)

Compliance Level: Required for vector registers partitioning (i.e. MSAIR\yrp Set), otherwise Reserved
Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Map register (MSAMap) is a 32-bit read/write register specifying avector register to be mapped. Figure
3-21 shows the format of the MSAMap. Figure 3-22 describes the MSAMap fields.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 47

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.4 MSA Control Registers

The software can read and write the MSAMap using CFCM SA and CTCM SA (Copy From and To Control MSA reg-
ister) instructions. If the multi-threading module is present, each thread context has its own MSAMap register
instance.

Whenvaluen,n =0, ..., 31, iswritten to MSAMap, the hardware is instructed to map vector register Wn to one of
the available physical registers. The successful mapping is confirmed by setting MSAAccessy,.

The total number of vector registers mapped at any time can not exceed the number of physical registersimple-

mented.
Figure 3-21 MSAMap Register Format
31 25 24 23 18 17 16 15 8 7 5 4 3 2 1 0
0 n
000000000000000000000000000
Figure 3-22 MSAMap Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:5 Reserved for future use; reads as zero and must be writ- RO 0 Reserved
ten as zero.
n 4.0 Vector register index. R/W 0 Required

3.4.8 MSA Unmap Register (MSAUnmap, MSA Control Register 7)

Compliance Level: Required for vector registers partitioning (i.e. MSAIR\yrp Set), otherwise Reserved
Access Mode: Privileged, accessible only when access to Coprocessor 0 is enabled

The MSA Unmap register (MSAUNmap) is a 32-bit read/write register specifying a vector register to be unmapped.
Figure 3-23 shows the format of the MSAUnmap. Figure 3-24 describes the MSAUnmap fields.

The software can read and write the MSAUnmap using CFCMSA and CTCMSA (Copy From and To Control MSA
register) instructions. If the multi-threading module is present, each thread context has its own MSAUnmap register
instance.

Whenvaluen,n=0, ..., 31, iswritten to MSAUnmap, the hardware is instructed to unmap vector register Wn. The
unmapping is confirmed by clearing MSAAccessy,,.

Figure 3-23 MSAUnmap Register Format

31 25 24 23 18 17 16 15 8 7 5 4 3 2 1 0
0 n
000000000000000000000000000
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 48

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.5 Exceptions

Figure 3-24 MSAUnmap Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
0 315 Reserved for future use; reads as zero and must be writ- RO 0 Reserved
ten as zero.
n 4.0 Vector register index. R/W 0 Required

3.5 Exceptions

MSA instructions can generate the following exceptions (see Table 3.5):

Reserved Instruction, if bit Config3y,sap (CPO Register 16, Select 3, bit 28) is not set, or if the usable FPU oper-
atesin 32-bit mode, i.e. bit Statusc;; (CP Register 12, Select 0, bit 29) is set and bit Statusgr (CP Register 12,

Select 0, bit 26) is not set. This exception uses the common exception vector with ExcCode field in Cause CPO
register set to OxOa.

Coprocessor Unusable, if CFCMSA or CTCM SA instructions attempt to read or write privileged MSA control
registers without Coprocessor 0 access enabled. This exception uses the common exception vector with ExcCode
field in Cause CPO register set to 0x0b and CE field set to 0 to indicate Coprocessor 0.

MSA Disabled, if bit Config5ysaen (CPO Register 16, Select 5, bit 27) is not set or, when vector registers parti-
tioning is enabled (i.e. MSAIRyrp Set), if any MSA vector register accessed by the instruction is either not

available or needs to be saved/restored due to a software context switch. This exception uses the common excep-
tion vector with ExcCode field in Cause CPO register set to 0x15.

MSA Floating Point, a data dependent exception signaled by the MSA floating point instruction. This exception
uses the common exception vector with ExcCode field in Cause CPO register set to Ox0e. The exact reason for
taking this exception isin the Cause bits of the MSA Control and Status Register MSACSR.

All MSA reserved opcodesin Table 3.18 are considered to be part of the MIPS SIMD Architecture on coresimple-
menting MSA. These opcodes will generate the following exceptions (see Table 3.5):

MSA Disabled, if MSA instructions are not enabled.

Reserved Instruction, if MSA instructions are enabled.

The conditions under which the M SA instructions are enabled are documented in Section 3.2 “MSA Software
Detection” and Section 3.3.2 “Floating-Point Registers Mapping”.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 49

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.5 Exceptions

Table 3.5 MSA Exception Code (ExcCode) Values

Exception Code Value
Decimal Hexadecimal Mnemonic Description
10 Ox0a RI Reserved Instruction exception
11 0x0b CpuU Coprocessor Unusable exception
14 O0x0e MSAFPE MSA Floating Point exception
21 0x15 MSADis MSA Disabled exception

3.5.1 Handling the MSA Disabled Exception

The exact reason for taking a MSA Disabled Exception can be determined by checking the Config5ysagn bit. No
MSA instruction can be executed if this bit is not set. By setting Config5y sagn, the OS knows the current software
context uses MSA resources and therefore it will save/restore MSA registers on context switch.

If the vector registers partitioning isimplemented (i.e. MSAIRyrp i set), the MSA Disabled Exception could be sig-
naled even if Config5ysagn bit isset. In thisinstance, the exception is caused by some vector registers not being

ready (either not available or in need to be saved/restored) for the current software context. The OS can map or
save/restore these vector registers by examining MSARequest, MSAAccess, and MSASave.

See Appendix A, “Vector Registers Partitioning” for an example of handling the MSA Disabled Exception when vec-
tor registers partitioning isimplemented.

3.5.2 Handling the MSA Floating Point Exception

In normal operation mode, floating point exceptions are signaled if at least one vector element causes an exception
enabled by the MSACSR Enable bitfield. Thereis no preciseindication in this case on which elements are at fault
and the corresponding exception causes. The exception handling routine should set the MSACSR non-trapping
exception mode bit NX and re-execute the MSA floating point instruction. All elements which would normally signal
an exception according to the MSACSR Enable hitfield are set to signaling NaN values, where the least significant 6
bits have the same format as the MSACSR Cause field (see Figure 3-25, Table 3.3) to record the specific exception
or exceptions detected for that element. The other elements will be set to the calcul ated results based on their oper-

ands.
Figure 3-25 Output Format for Faulting Elements when NX is set
6 5 4 3 2 1 0
Signaling NaN Bits Cause
E|V|Z|O|U]|I
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 50

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.5 Exceptions

When the non-trapping exception mode bit NX is set, no floating point exception will be taken, not even the always
enabled Unimplemented Operation Exception. Note that by setting the NX hbit, the MSACSR Enable bitfield is not
changed and is still used to generate the appropriate default results. Regardless of the NX value, if afloating point
exception is not enabled, i.e. the corresponding MSACSR Enable bit is 0, the floating point result is a default value
as shown in Table 3.6.

The pseudocode in Figure 3.26 shows the process of updating the MSACSR Cause bits and setting the destination’s
value. This processisinvoked element-by-element for all elements the instruction operates on. It is assumed
MSACSR Cause hits are al cleared before executing the instruction. The MSACSR Flags bits are updated after al
the elements have been processed and MSACSR Cause contains no enabled exceptions. If there are enabled excep-
tionsin MSACSR Cause, aM SA floating-point exception will be signaled and the MSACSR Flags are not updated.
The pseudocode in Figure 3.27 describes the MSACSR Flags update and exception signaling condition.

For instructions with non floating-point results, the pseudocode in Figure 3.26 and Figure 3.27 apply unchanged and
both the format in Figure 3-25 and the default values from Table 3.6 are preserved for enabled exceptions when NX

bit is set. For disabled exceptions, the default values are explicitly documented case-by-case in the instruction’s
description section.

Table 3.6 Default Values for Floating Point Exceptions

Default Value, Default Value,
Exception Rounding Mode Disabled Exception Enabled Exception, and NX set
Invalid The default valueis either the default quiet The default signaling NaN (see Table 3.7)
Operation NaN (see Table 3.7), or one of the signaling of the format shown in Figure 3-25 with
NaN operands propagated as a quiet NaN. Cause V hit set.
Divide by The default valueis the properly signed infin- | The default signaling NaN (see Table 3.7)
Zero ity. of the format shown in Figure 3-25 with
Cause Z hit set.
Underflow The default value is the rounded result based The default signaling NaN (see Table 3.7)
on the rounding mode. of the format shown in Figure 3-25 with
Cause U hit set.

Inexact The default value is the rounded result based The default signaling NaN (see Table 3.7)
on the rounding mode. If caused by an over- of the format shown in Figure 3-25 with
flow without the overflow exception enabled, Cause | bit set.
the default value is the overflowed result.

Overflow The default value depends on the rounding The default signaling NaN (see Table 3.7)
mode, as shown below. of the format shown in Figure 3-25 with
Cause O hit set.
Round to nearest An infinity with the sign of the overflow value.
Round toward zero | Theformat's largest finite number with the
sign of the overflow value.
Round towards For positive overflow values, positive infinity.
positive For negative overflow values, the format’s
smallest negative finite number.
Round towards For positive overflow values, the format’s larg-
negative est finite number. For negative overflow val-
ues, minus infinity.
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 51

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.5 Exceptions

Table 3.7 Default NaN Encodings

Format Quiet NaN Signaling NaN
16-bit 0x7E00 03x7CNN?

32-hit 0x7FCO 0000 0x7F80 OONN

64-hit 0x7FF8 0000 0000 0000 0x7FF0 0000 0000 OONN

1. All signaling NaN values have the format shown in Figure 3-25. Byte 0xNN has at |east
one bit set showing the reason for generating the signaling NaN value.

Figure 3.26 MSACSR(,,se Update Pseudocode

Input
c: current element exception(s) E, V, Z, O, U, I bitfield
(bit E is 0x20, O is 0x04, U is 0x02, and I is 0x01)
d: default value to be used in case of a disabled exception

e: signaling NaN value to be used in case of NX set, i1.e. a non-trapping
exception

r: result value if the operation completed without an exception

Output

v: value to be written to destination element
Updated MSACSRcause

enable « MSACSRgp.pie | E /* Unimplemented (E) is always enabled */

/* Set Inexact (I) when Overflow (0O) is not enabled (see Table 3.3) */
if (¢ & O0) # 0 and (enable & O) = 0 then

c«c |1
endif

/* Clear Exact Underflow when Underflow (U) is not enabled (see Table 3.3) */
if (¢ & U) # Oand (enable & U) = 0 and (¢ & I) = 0 then

A

C <« C U
endif

cause <« Cc & enable

if cause = 0 then

/* No enabled exceptions, update the MSACSR Cause with all current exceptions */
MSACSReause ¢ MSACSReguse | ©

if ¢ = 0 then

/* Operation completed successfully, destination gets the result */
V < ¢

else
/* Current exceptions are not enabled, destination

gets the default value for disabled exceptions case */
v <« d

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 52

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.5 Exceptions

endif
else
/* Current exceptions are enabled */
if MSACSRyy = 0 then
/* Exceptions will trap, update MSACSR Cause with all current exceptions,
destination is not written */
MSACSRcause ¢ MSACSRcause | ©
else
/* No trap on exceptions, element not recorded in MSACSR Cause,
destination gets the signaling NaN value for non-trapping exception */
v « ((e >> 6) << 6) | c
endif
endif

Figure 3.27 MSACSRE,4s Update and Exception Signaling Pseudocode

if (MSACSRc use & (MSACSRg,.p1e | E)) = 0 then /* Unimplemented (bit E 0x20)
is always enabled */
/* No enabled exceptions, update the MSACSR Flags with all exceptions */
MSACSRp1ags ¢ MSACSRpiags | MSACSRcauge
else
/* Trap on the exceptions recorded in MSACSR Cause,
MSACSR Flags are not updated */
SignalException (MSAFPE, MSACSRcsuse)

3.5.3 NaN Propagation

MSA propagates NaN operands as specified by the |EEE Standard for Floating-Point Arithmetic 754™.2008.

If the destination format is floating-point, all NaN propagating operations with one NaN operand produce aNaN with
the payload of the input NaN. When two or three operands are NaN, the payload of the resulting NaN isidentical to
the payload of one of the input NaNs selected from left to right as described by the instruction format.

The above NaN propagation rules apply to select the signaling NaN operand used in generating the default quiet NaN
value when the Invalid Operation exception is disabled (see Table 3.6).

Note that signaling NaN operands always signal the Invalid Operation exception and as such, they take precedence
over all quiet NaN operands.

If the destination format is not floating-point (e.g. conversions to integer/fixed-point or compares) or the NaN oper-
ands are not propagated (e.g. min or max operations), the expected result is documented in the instruction’s descrip-
tion section.

Quiet NaN values are generated from input signaling NaN values by:

» Copying the signaling NaN sign value to the quiet NaN sign

» Copying the most significant bits of the signaling NaN mantissa to the most significant bits of the quiet NaN
mantissa. |n cases where the source signaling NaN and destination quiet NaN have the same width, all mantissa

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 53

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.6 Instruction Syntax

bits are copied. In cases where the destination is wider than the source, the least significant bits of the destination
mantissa are set to zero. In cases where the destination is narrower than the source, the least significant bits of the
input mantissa are ignored.

e Setting the quiet NaN’s exponent field to the maximum value and the most significant mantissa bit to 1.

3.5.4 Flush to Zero and Exception Signaling

Some M SA floating point instructions might not handle subnormal input operands or compute tiny non-zero results.
Such instructions may signal the Unimplemented Operation Exception and | et the software emulation finalize the
operation. If software emulation is not needed or desired, MSACSR FSbit could be set to replace every tiny non-zero
result and subnormal input operand with zero of the same sign.

The MSACSR FS hit changes the behavior of the Unimplemented Operation Exception. All the other floating point
exceptions are signaled according to the new values of the operands or the results. In addition, when MSACSR FSbit
is set:

« Tiny non-zero results are detected before rounding®. Flushing of tiny non-zero results causes Inexact and Under-
flow Exceptions to be signaled for all instructions except the approximate reciprocals.

» Flushing of subnormal input operandsin all instructions except comparisons causes | nexact Exception to be sig-
naled.

e For floating-point comparisons, the Inexact Exception is not signaled when subnormal input operands are
flushed.

e 16-bit floating-point values and inputs to non arithmetic floating-point instructions are never flushed.

Should the aternate exception handling attributes of the IEEE Standard for Floating-Point Arithmetic 754™.2008,
Section 8 be desired, the MSACSR FS hit should be zero, the Underflow Exception be enabled and atrap handler be
provided to carry out the execution of the alternate exception handling attributes.

3.6 Instruction Syntax

The MSA assembly language coding uses the following syntax elements:

» func: function/instruction name, e.g. ADDS_Sor adds _sfor signed saturated add

» df: destination data format, which could be a byte, halfword, word, doubleword, or the vector itself

e wd, ws, and wt: destination, source, and target vector registers, e.g. $w0, ..., $w3l

e rd, rs: general purpose registers (GPRs), e.g. $0, ..., $31

» ws[n]: vector register element of index n, where n isavalid index value for elements of dataformat df

 m: immediate value valid as a bit index for the dataformat df

ITi ny non-zero results that would have been normal after rounding are flushed to zero.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 54

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.6 Instruction Syntax

e UN, sN: N-bit unsigned or signed value, e.g. s10, u5
e iN: N-bit value where the sign is not relevant, e.g. i8

MSA instructions have two or three register, immediate, or element operands. One of the destination data format

abbreviations shown in Table 3.8 is appended to the instruction name®. Note that the data format abbreviation is the
same regardless of the instruction’s assumed data type. For example al integer, fixed-point, and floating-point
instructions operating on 32-hit elements use the same word (“.W” in Table 3.8) dataformat.

Table 3.8 Data Format Abbreviations

Data Format Abbreviation

Byte, 8-bit

Halfword16-bit

Word, 32-bit

Doubleword, 64-bit

<|lo|ls|z|®@

Vector

3.6.1 Vector Element Selection

MSA instructions of the form func.df wd,ws[n] and func.df rd,ws[n] select the nth element in the vector register ws
based on the data format df. The valid element index values for various data formats and vector register sizes are
shown in Table 3.9. The vector element is being used as a fixed operand across al destination vector elements.

Table 3.9 Valid Element Index Values

Data Format Element Index
Byte n=0,...,15
Halfword n=0,..,7
Word n=o0,..3
Doubleword n=0,1

3.6.2 Load/Store Offsets

The vector load and store instructions take a 10-bit signed offset s10 in data format df units. By convention, in the
assembly language syntax al offsets are in bytes and have to be multiple of the size of the data format.

2 | ngtructions names and data format abbreviations are case insensitive.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 55

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.6 Instruction Syntax

For example, the offset indicated by the load word vector instruction
1d.w $w5,12(%$1)

isnot 12 words, but rather 12 bytes. The assembler divides the byte offset (i.e. 12) by the size of the word data format
(i.e. 4), and generates the LD.W machine instruction by setting s10 bitfield to the word offset value (i.e. 3=12/ 4).

3.6.3 Instruction Examples

Let us assume vector registers $wl and $w2 are initialized to the word val ues shown in Figure 3-28, Figure 3-29 and
GPR $2 isinitialized as shown in Figure 3-30.

Figure 3-28 Source Vector $w1 Values

127 64 63 0

Figure 3-29 Source Vector $w2 Values

127 64 63 0

Figure 3-30 Source GPR $2 Value

Regular MSA instructions operate element-by-element with identical source, target, and destination data types.
Figure 3-31 through Figure 3-34 have the resulting values of destination vectors $w4, $w5, $w6, and $w7 after exe-
cuting the following sequence of word additions and move instructions:

addv.w $Sw5,Swl, sSw2
fill.w $Swé6,S$2

addvi.w $w7,Swl,17
splati.w $w8,S$w2[2]

Figure 3-31 Destination Vector $w5 Value for ADDV.W Instruction

127 64 63 0
a+A b+B c+C d+D

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 56

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Figure 3-32 Destination Vector $w6 Value for FILL.W Instruction

127 64 63 0

Figure 3-33 Destination Vector $w7 Value for ADDVI.W Instruction

127 64 63 0

a+17 b+17 c+17 d+ 17

Figure 3-34 Destination Vector $w8 Value for SPLAT.W Instruction

127 64 63 0

Other M SA instructions operate on adjacent odd/even source elements generating results on data formats twice as
wide. See Figure 3-35 for the destination layout of such an instruction, i.e. the signed doubleword dot product:

dotp_s.d sw9, $wl, $w2
Note that the actual instruction, e.g. DOTP_S.D, specifiesthe data format of the destination. The data format of the

source operandsisinferred as being also signed and half the width, i.e. word in this case.

Figure 3-35 Destination Vector $w9 Value for DOTP_S Instruction

127 64 63 0
‘ a* A+b*B c*C+d*D

3.7 Instruction Encoding

3.7.1 Data Format and Index Encoding

Most of the MSA instructions operate on byte, halfword, word or doubleword data formats (see Section 3.3 “MSA
Vector Registers’). Internally, the data format df is coded by a 2-bit field as shown in Table 3.10. For instructions
operating only on two data formats, the internal coding is shownin Table 3.11 and Table 3.12.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 57

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Table 3.10 Two-bit Data Format Field Encoding

df Bit 0

Bit 1 0 1
0 Byte Halfword
1 Word Doubleword

Table 3.11 Halfword/Word Data Format Field Encoding

df Bit 0

0 1
Halfword Word

Table 3.12 Word/Doubleword Data Format Field Encoding

df Bit 0

0 1
| Word Doubleword

Table 3.13 Data Format and Element Index Field Encoding

df/in’ Bits 5...0
00nnnn 100nnn 1100nn 11100n
| Byte Halfword Word Doubleword
’T Bits 5...0
01nnnn 101nnn 1101nn 11101n
| Reserved

1. Bits marked as n give the element index value.

Table 3.14 Data Format and Bit Index Field Encoding

df/m! Bits 6...0

Ommmmmm 10mmmmm 110mmmm 1110mmm

| Doubleword Word Halfword Byte

1. Bits marked as m give the bit index value.

MSA instructions using a specific vector element code both data format and element index in a 6-hit field df/n as
shown in Table 3.13. All invalid index values or data formats will generate a Reserved Instruction Exception. For
example, avector register has 16 byte elements while the byte dataformat can code up to 32 byte elements. Selecting
any vector byte element other than 0, 1, ..., 15 generates a Reserved Instruction Exception.

The combinations marked Vector (“.V” in Table 3.8) are used for coding certain instructions with data formats other
than byte, halfword, word, or doubleword.

If an instruction specifies a bit position, the dataformat and bit index df/m are coded as shown in Table 3.14.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 58

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

3.7.2 Instruction Formats

All MSA instructions except branches use 40 minor opcodes in the MSA major opcode 30 (see Table 3.16). MSA
branch instructions use 10 rs field encodings in the COP1 opcode 17 (see Table 3.17).

Each allocated minor opcode is associated specific instruction formats as follows:

I8 (Figure 3-36): instructions with an 8-bit immediate value and either implicit dataformat or data format df
(Table 3.8) coded in bits 25...24

I5 (Figure 3-37): instructions with a 5-bit immediate value, where the data format df (Table 3.8) is coded in bits
22...21 and the operation in bits 25...23

BIT (Figure 3-38): instructions with an immediate bit index and data format df/m (Table 3.14) coded in bits
22...16, where the operation is coded in bits 25...23

110 (Figure 3-39): instructions with a 10-bit immediate, where the data format df (Table 3.8) is coded in bits
22...21 and the operation in bits 25...23

3R (Figure 3-40): 3-register operations coded in bits 25...23 with data format df (Table 3.8) is coded in bits
22..21

ELM (Figure 3-41): instructions with an immediate element index and dataformat df/n (Table 3.13) coded in bits
21...16, where the operation is coded in bits 25...22

3RF (Figure 3-42): 3-register floating-point or fixed-point operations coded in bits 25...22 with data format df
(Table 3.11, Table 3.12) coded in bit 21

VEC (Figure 3-43): 3-register instructions with implicit data formats depending on the operations coded in bits
25...21

MI10 (Figure 3-44): 2-register instructions with a 10-bit immediate value, where the dataformat is either implicit
or explicitly coded as df (Table 3.8) in bits 1...0, and the operation is coded in bit 25 and the minor opcode bits
5.2

2R (Figure 3-45): 2-register operations coded in bits 25...18 with data format df (Table 3.11) is coded in bits
17...16

2RF (Figure 3-46): 2-register floating-point operations coded in bits 25...17 with data format df (Table 3.11)
coded in bit 16

Branch (Figure 3-47): instructions with a 16-bit immediate, where the data format is either implicit or explicitly
coded as df (Table 3.8) in bits 22...21, and the operation is coded in bits 25...23

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 59

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Figure 3-36 18 Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

MSA . .
011110 df i8 ws wd minor opcode
6 2 8 5 5 6

Figure 3-37 15 Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

MSA . . .
011110 operation | df i5 ws wd minor opcode
6 3 2 5 5 5 6

Figure 3-38 BIT Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

MSA . .
011110 operation df/m ws wd minor opcode
6 3 7 5 5 6

Figure 3-39 110 Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA . . .
011110 operation | df i10 wd minor opcode
6 3 2 10 5 6

Figure 3-40 3R Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSA . .
011110 operation | df wit ws wd minor opcode
6 3 2 5 5 5 6
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 60

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Figure 3-41 ELM Instruction Format

3.7 Instruction Encoding

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSA . .
011110 operation df/n ws wd minor opcode
6 4 6 5 5 6
Figure 3-42 3RF Instruction Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
MSA .)
011110 operation df wit ws wd minor opcode
6 4 1 5 5 5 6
Figure 3-43 VEC Instruction Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
MSA . .
011110 operation wit ws wd minor opcode
6 5 5 5 5 6
Figure 3-44 MI10 Instruction Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
MSA .
011110 s10 rs wd minor opcode | df
6 10 5 5 3 2
Figure 3-45 2R Instruction Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
MSA . .
011110 operation df ws wd minor opcode
6 8 2 5 5 6

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Figure 3-46 2RF Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

MSA . .
011110 operation df ws wd minor opcode
6 9 1 5 5 6

Figure 3-47 Branch Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

COP1 .
010001 operation df wit s16
6 3 2 5 16

3.7.3 Instruction Bit Encoding

This chapter describes the bit encoding tables used for the MSA. Table 3.15 describes the meaning of the symbols
used in the tables. These tables only list the instruction encoding for the MSA instructions. See Volumes | and 11 of
this multi-volume set for afull encoding of all instructions.

Figure 3.48 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31...29 of the
opcode field are listed in the left-most columns of the table. Bits 28...26 of the opcode field are listed along the top-
most rows of the table. Both decimal and binary values are given, with the first three bits designating the row, and the
last three bits designating the column.

Aninstruction’s encoding is found at the intersection of arow (bits 31...29) and column (bits 28...26) value. For
instance, the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Sim-
ilarly, the opcode value for EX2 is 64 (decimal), or 110100 (binary).

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 62

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

31

3.7 Instruction Encoding

Figure 3.48 Sample Bit Encoding Table

26 25 21 20 16 15

opcode

rs rt immediate

opcode

5 5 16

Binary encoding of
opcode (28...26)

Decimal encoding of

* opcode (28...26)

bits 28...26 \

bits 31...29

0

B

000

1 2 3 4 5 6 7 *
001 010 011 100 101 110 11

0

000

001

010

011

EX1

ﬂ

100

101

110

EX2

N[Oo| o] M| O N =

111

Decimal encoding of

opcode (31...29)

Binary encoding of
opcode (31...29)

Table 3.15 Symbols Used in the Instruction Encoding Tables

Symbol

Meaning

Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved I nstruction Exception.

(Also italic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, MIPS Technologies will assist the partner in selecting
appropriate encoding if requested by the partner. The partner is not required to consult with MIPS
Technol ogies when one of these encoding is used. If no instruction is encoded with this value, exe-
cuting such an instruction must cause a Reserved Instruction Exception (SPECIAL2 encoding or
coprocessor instruction encoding for a coprocessor to which accessis alowed) or a Coprocessor
Unusable Exception (coprocessor instruction encoding for a coprocessor to which access is not
allowed).

Field codes marked with this symbol represent an EJTAG support instruction and implementation
of thisencoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding isimple-
mented, it must match the instruction encoding as shown in the table.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

63

3.7 Instruction Encoding

Table 3.15 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

€ Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

[0} Operation or field codes marked with this symbol are obsolete and will be removed from afuture
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

@ Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table 3.16 MIPS32 Encoding of the Opcode Field

opcode bits 28...26
0 1 2 3 4 5 6 7

bits 31...29 000 001 010 011 100 101 110 111

0 | 000

1 | 001

2 | 010 COP15

3 | MSA b

4 | 100

5 | 101

6 | 110

7 |11

Table 3.17 MIPS32 COP1 Encoding of rs Field for MSA Branch Instructions

rs bits 23...21
0 1 2 3 4 5 6 7
bits 25...24 000 001 010 011 100 101 110 111
0 | 00
1 01 BZ.V BNZ.V
2 10
3 11 BZ.B BZ.H BZ.W BZ.D BNZ.B BNZ.H BNZ.W BNZ.D
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 64

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Table 3.18 Encoding of MIPS MSA Minor Opcode Field®

minor Bits 2...0

0 1 2 3 4 5 6 7
Bits 5...3 000 001 010 011 100 101 110 111
0 | o000 18 18 18 * * * 15 152
1 | o001 * BIT BIT * * 3R 3R 3R
2 | o10 3R 3R 3R 3R 3R 3R * *
3 | oM * ELM 3RF 3RF 3RF * VEC/2R/2RF *
4 | 100 MI10 MI10 MI10 MI10 MI10 MI10 MI10 MI10
5 | 101 " " " " " : " "
5 1 110 . " " " . " " .
S P " " " " " " " "

1. The opcodes marked ‘** are M SA reserved opcodes and will generate the MSA Disabled exception or the Reserved

Instruction exception as specified in Section 3.5 “Exceptions’.
2. Includes 110

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Table 3.19 Encoding of Operation Field for MI10 Instruction Formats

data

operation format!
Bits 5...2 Bits 1...0

00| B

01| .H
8 | 1000 LD 10| w

11| D

00| B

01| H
9 | 1001 ST 0] w

11| D

1. SeeTable 3.8.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

65

3.7 Instruction Encoding

Table 3.20 Encoding of Operation Field for I5 Instruction Format

operation

Bits 5...0

data
format’

Bits 25...23

6

7

000110

000111

Bits 22...21

0 | 000

ADDVI

CEQl

00

01

10

11

1| 001

SUBVI

00

01

10

11

2 | 010

MAXI_S

CLTI_S

00

01

10

11

3 | 011

MAXI_U

CLTI_U

00

01

10

11

4 | 100

MINI_S

CLEL_S

00

01

10

11

5 | 101

MINI_U

CLEI_U

00

01

10

11

LDI?

00

01

10

11

00

01

10

o|s|z|wlo|s|x|w|0|S|z|wlo|s|x|w 0S| z|wlos|x|wo|s|z|wlols|x

11

1. See Table 3.8.

2. 110 instruction format.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 66

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Table 3.21 Encoding of Operation Field for 18 Instruction Format

’W Bits 5...0
0 1 2 |
Bits 25...24| 000000 000001 000010
o[oo ANDI.B BMNZI.B SHFB
1] o1 ORLB BMZI.B SHFH
2| 10 NORI.B BSELI.B SHEW
3| 1 XORI.B " *

Table 3.22 Encoding of Operation Field for VEC/2R/2RF Instruction Formats

’W Bits 22...21
0 1 2 3
Bits 25...23 00 01 10 11
0 | 000 AND.V OR.V NOR.V XOR.V
1 001 BMNZ.V BMZ.V BSEL.V *
2 | 010 * * * *
3 | 011 * * * *
4 | 100 * * * *
5 | 101 * * * *
6 | 110 2R format 2RF format * *
7 | 111 * * * *

Table 3.23 Encoding of Operation Field for 2R Instruction Formats

data
operation format’
Bits 20...18 Bits 17...16
00| B
01| .H
0 000 FILL ol w
11| D
00| B
01| H
1 001 PCNT T
11| D
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 67

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Table 3.23 Encoding of Operation Field for 2R Instruction Formats (Continued)

o[B
o1 H
, | o NLOC [7oT w
1|l D
0| B
o1 H
3| ot NLZC ol w
1|l D
o[B
ot H
4..7[100...111 . ol w
1| D

1. See Table 3.8.

Table 3.24 Encoding of Operation Field for 2RF Instruction Formats

data
operation format’
Bits 20...17 Bit 16
0 | 0000 | FCLASS 0
1] D
1 | 0001 | FTRUNC_S oW
1] D
2 | 0010 | FTRUNC_U o)W
1] D
3 | o011 FSQRT oW
1] D
4 |otoo| Fmsarr | 2| W
1] D
5 | 0101 FRCP oy
1] D
6 | 0110 FRINT oW
1] D
7 | o111 FLOG2 oW
1] D
8 | 1000 | FEXUPL oW
1] D
9 | 1001 | FEXUPR oW
1] D
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 68

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Table 3.24 Encoding of Operation Field for 2RF Instruction Formats (Continued)

10 | 1010 FFQL 0 W
1 .D
11 | 1011 FFQR 0 W
1 .D
12 | 1100 FTINT_S 0 W
1 .D
13 | 1101 FTINT_U 0 W
1 .D
14 | 1110 FFINT_S 0 W
1 .D
15 | 1111 FFINT_U 0 W
1 .D
1. See Table 3.12.

Table 3.25 Encoding of Operation Field for 3R Instruction Format

operatio data
n Bits 5...0 format’
13 14 15 16 17 18 19 20 21
Bits
25...23| 001101 001110 001111 010000 010001 010010 010011 010100 010101 [Bits 22...21
* 00
01 H
0 |000 SLL ADDV CEQ ADD_A SUBS_S MULV SLD VSHF 10 W
DOTP_S)
11 .D
* 00 | .B
01 H
1 1001 SRA SUBV * ADDS_A | SUBS_U MADDV SPLAT SRAR 10 W
DOTP_U)
11 .D
* 00 | B
01 H
2 |010 SRL MAX_S CLT_S | ADDS_S |SUBSUS_U| MSUBV PCKEV SRLR 10 w
DPADD_S :
11 .D
* 00 | B
01 H
3 (011| BCLR MAX_U CLT_U | ADDS_U [SUBSUU_S * PCKOD * 10 W
DPADD_U)
11 .D
* * 00 | .B
01 H
4 (100 BSET MIN_S CLE_S AVE_S ASUB_S DIV_S ILVL 10 W
DPSUB_S HADD_S)
11 .D

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

69

Table 3.25 Encoding of Operation Field for 3R Instruction Format (Continued)

3.7 Instruction Encoding

BNEG

MIN_U

CLE_U AVE_U

ASUB_U

*

*

00

DIV_U

DPSUB_U

ILVR

HADD_U

01

10

11

BINSL

MAX_A

* AVER_S

MOD_S

ILVEV

00

HSUB_S

01

10

11

BINSR

MIN_A

* AVER_U

MOD_U

ILVOD

00

HSUB_U

01

10

11

o|ls|z|wlo|s|T|o|o|lST|o

1. See Table 3.8.

Table 3.26 Encoding of Operation Field for ELM Instruction Format

operation

data format'

Bits 25...22

Bits 21...

16

0 0000

SLDI

00nnnn

100nnn

1100nn

11100n

ols|z|w

*

11110n

CTCMSA

111110

*

111111

1 0001

SPLATI

00nnnn

100nnn

1100nn

11100n

ols|z|w

*

11110n

CFCMSA

111110

*

111111

2 0010

COPY_S

00nnnn

100nnn

1100nn

S|l w

11100n

*

11110n

MOVE.V

111110

111111

3 0011

COPY_U

00nnnn

100nnn

1100nn

S|l w

11100n

*

11110n

111110

111111

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

70

4 0100

INSERT

00nnnn

100nnn

S|lx|w

1100nn

*

11100n

11110n

111110

111111

5 0101

INSVE

00nnnn

100nnn

1100nn

o|ls|T|w

11100n

11110n

111110

111111

...15{0110...1111

00nnnn

100nnn

1100nn

11100n

11110n

111110

111111

1. See Table 3.13.

3.7 Instruction Encoding

Table 3.26 Encoding of Operation Field for ELM Instruction Format (Continued)

Table 3.27 Encoding of Operation Field for 3RF Instruction Format

data
operation Bits 5...0 format!
26 27 28 Bit 21

Bits 25...22 011010 011011 011100

0 | 0000 FCAF W FADD W * W) o
D D D 1
w W W

1 | 0001 FCUN FSUB FCOR 0
.D .D .D 1

2 | 0010 FCEQ W FMUL W FCUNE Sl
.D D .D 1

3 | 0011 FCUEQ W FDIV W FCNE W) o
D D D 1

4 | 0100 FCLT W FMADD W MUL_Q H 0
.D .D W 1

5 | 0101 FCULT W FMSUB W MADD_Q H 0
.D D W 1

6 | 0110 FCLE W * MSUB_Q H 0
D W 1

7 | o111 FCULE W FEXP2 W * 0
.D .D 1

8 | 1000 FSAF W FEXDO H * B
.D W .D 1

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 71

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Table 3.27 Encoding of Operation Field for 3RF Instruction Format (Continued)

9 | 1001 FSUN W * FSOR W
.D .D
10 | 1010 FSEQ W FTQ H FSUNE W
.D .D
11 | 1011 FSUEQ W * FSNE W
.D .D
12 | 1100 FSLT W FMIN W MULR_Q H
.D .D W
13 | 1101 FSULT W FMIN_A W MADDR_Q. H
.D .D W
14 | 1110 FSLE W FMAX W MSUBR_Q H
.D .D W
15 [1111 FSULE W FMAX_A W *
.D .D

1. See Table 3.11 and Table 3.12.

Table 3.28 Encoding of Operation Field for BIT Instruction Format

data format'

operation

Bits 5...0

9

10

Bits 25...23

001001

001010

Bits 22...16

0 | 000

SLLI

SAT_S

1110mmm

110mmmm

10mmmmm

Oommmmmm

1| 001

SRAI

SAT_U

1110mmm

110mmmm

10mmmmm

Ommmmmm

2 | 010

SRLI

SRARI

1110mmm

110mmmm

10mmmmm

Ommmmmm

BCLRI

SRLRI

1110mmm

110mmmm

10mmmmm

Oommmmmm

4 | 100

BSETI

1110mmm

110mmmm

10mmmmm

Ommmmmm

o|s|z|w|lo|s|z|wlo|lsS|z|w oS T|w oSz

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 72

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

3.7 Instruction Encoding

Table 3.28 Encoding of Operation Field for BIT Instruction Format (Continued)

5| 101

BNEGI

1110mmm

110mmmm

10mmmmm

Oommmmmm

6 [110

BINSLI

1110mmm

110mmmm

10mmmmm

Ommmmmm

BINSRI

1110mmm

110mmmm

10mmmmm

Ommmmmm

o|s|z|wlo|sS|z|wlo|lS| x|

1. See Table 3.14.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 73

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Chapter 4

The MIPS32® SIMD Architecture Instruction Set

4.1 Instruction Set Descriptions

The MIPS32® SIMD Architecture (MSA) consists of integer, fixed-point, and floating-point instructions, al encoded
in the MSA major opcode space.

Most MSA instructions operate vector element by vector element in atypical SIMD manner. Few instructions handle
the operands as bit vectors because the elements don’t make sense, e.g. for the bitwise logical operations.

For certain instructions, the source operand could be an immediate value or a specific vector element selected by an
immediate index. The immediate or vector element is being used as a fixed operand across all destination vector ele-
ments.

The next two sections list MSA instructions grouped by category and provide individual instruction descriptions
arranged in a phabetical order. The constant WRLEN used in all instruction descriptionsis set to 128, i.e. the MSA
vector register width in bits.

4.1.1 Instruction Set Summary by Category

MSA instruction set implements the following categories of instructions: integer arithmetic (Table 4.1), bitwise
(Table 4.2), floating-point arithmetic (Table 4.3) and non arithmetic (Table 4.4), floating-point compare (Table 4.5),
floating-point conversions (Table 4.6), fixed-point (Table 4.7), branch and compare (Table 4.8), |load/store and move
(Table 4.9), and element permute (Table 4.10).

The left-shift add instruction LSA (Table 4.11) isintegral part of the MIPS base architecture. The corresponding doc-
umentation pages will be incorporated in the future rel eases of the base architecture specifications.

Table 4.1 MSA Integer Arithmetic Instructions

Mnemonic Instruction Description
ADDV, ADDVI Add
ADD_A, ADDS A Add and Saturated Add Absolute Values
ADDS S,ADDS U Signed and Unsigned Saturated Add
HADD_S, HADD_U Signed and Unsigned Horizontal Add
ASUB_S,ASUB_U Absolute Value of Signed and Unsigned Subtract
AVE_S, AVE U Signed and Unsigned Average
AVER_S, AVER U Signed and Unsigned Average with Rounding
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 74

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

4.1 Instruction Set Descriptions

Table 4.1 MSA Integer Arithmetic Instructions (Continued)

Mnemonic

Instruction Description

DOTP_S, DOTP_U

Signed and Unsigned Dot Product

DPADD_S, DPADD_U

Signed and Unsigned Dot Product Add

DPSUB_S, DPSUB_U

Signed and Unsigned Dot Product Subtract

DIV_S DIV_U Divide
MADDV Multiply-Add
MAX_A, MIN_A Maximum and Minimum of Absolute Values

MAX_S, MAXI_S, MAX_U, MAXI_U

Signed and Unsigned Maximum

MIN_S, MINI_S, MIN_U, MINI_U

Signed and Unsigned Maximum

MSUBV

Multiply-Subtract

MULV

Multiply

MOD_S, MOD_U

Signed and Unsigned Remainder (M odulo)

SAT S, SAT U

Signed and Unsigned Saturate

SUBS S, SUBS U

Signed and Unsigned Saturated Subtract

HSUB_S, HSUB_U

Signed and Unsigned Horizontal Subtract

SUBSUU_S Signed Saturated Unsigned Subtract
SUBSUS U Unsigned Saturated Signed Subtract from Unsigned
SUBYV, SUBVI Subtract
Table 4.2 MSA Bitwise Instructions
Mnemonic Instruction Description
AND, ANDI Logical And
BCLR, BCLRI Bit Clear

BINSL, BINSLI, BINSR, BINSRI

Bit Insert Left and Right

BMNZ, BMNZI Bit Move If Not Zero
BMZ, BMZI| Bit Move If Zero
BNEG, BNEGI Bit Negate
BSEL, BSELI Bit Select
BSET, BSETI Bit Set
NLOC Leading One Bits Count
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 75

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

4.1 Instruction Set Descriptions

Table 4.2 MSA Bitwise Instructions (Continued)

Mnemonic Instruction Description
NLZC Leading Zero Bits Count
NOR, NORI Logical Negated Or
PCNT Population (Bits Set to 1) Count
OR, ORI Logical Or
SLL, SLLI Shift Left
SRA, SRAI Shift Right Arithmetic
SRAR, SRARI Rounding Shift Right Arithmetic
SRL, SRLI Shift Right Logical
SRLR, SRLRI Rounding Shift Right Logical
XOR, XORI Logical Exclusive Or
Table 4.3 MSA Floating-Point Arithmetic Instructions
Mnemonic Instruction Description
FADD Floating-Point Addition
FDIV Floating-Point Division
FEXP2 Floating-Point Base 2 Exponentiation
FLOG2 Floating-Point Base 2 Logarithm

FMADD, FMSUB

Floating-Point Fused Multiply-Add and Multiply-Subtract

FMAX, FMIN

Floating-Point Maximum and Minimum

FMAX_A, FMIN_A

Floating-Point Maximum and Minimum of Absolute Values

FMUL Floating-Point Multiplication

FRCP Approximate Floating-Point Reciprocal

FRINT Floating-Point Round to Integer

FRSQRT Approximate Floating-Point Reciprocal of Square Root
FSQRT Floating-Point Square Root

FSUB Floating-Point Subtraction

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

76

4.1 Instruction Set Descriptions

Table 4.4 MSA Floating-Point Non Arithmetic Instructions

Mnemonic Instruction Description

FCLASS Floating-Point Class Mask

Table 4.5 MSA Floating-Point Compare Instructions

Mnemonic Instruction Description
FCAF Floating-Point Quiet Compare Always False
FCUN Floating-Point Quiet Compare Unordered
FCOR Floating-Point Quiet Compare Ordered
FCEQ Floating-Point Quiet Compare Equal
FCUNE Floating-Point Quiet Compare Unordered or Not Equal
FCUEQ Floating-Point Quiet Compare Unordered or Equal
FCNE Floating-Point Quiet Compare Not Equal
FCLT Floating-Point Quiet Compare Less Than
FCULT Floating-Point Quiet Compare Unordered or Less Than
FCLE Floating-Point Quiet Compare Less Than or Equal
FCULE Floating-Point Quiet Compare Unordered or Less Than or Equal
FSAF Floating-Point Signaling Compare Always False
FSUN Floating-Point Signaling Compare Unordered
FSOR Floating-Point Signaling Compare Ordered
FSEQ Floating-Point Signaling Compare Equal
FSUNE Floating-Point Signaling Compare Unordered or Not Equal
FSUEQ Floating-Point Signaling Compare Unordered or Equal
FSNE Floating-Point Signaling Compare Not Equal
FSLT Floating-Point Signaling Compare Less Than
FSULT Floating-Point Signaling Compare Unordered or Less Than
FSLE Floating-Point Signaling Compare Less Than or Equal
FSULE Floating-Point Signaling Compare Unordered or Less Than or Equal

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

77

4.1 Instruction Set Descriptions

Table 4.6 MSA Floating-Point Conversion Instructions

Mnemonic

Instruction Description

FEXDO

Floating-Point Down-Convert Interchange Format

FEXUPL, FEXUPR

Left-Half and Right-Half Floating-Point Up-Convert | nterchange Format

FFINT_S, FFINT_U

Floating-Point Convert from Signed and Unsigned Integer

FFQL, FFQR

Left-Haf and Right-Half Floating-Point Convert from Fixed-Point

FTINT_S, FTINT_U

Floating-Point Round and Convert to Signed and Unsigned Integer

FTRUNC_S, FTRUNC U

Floating-Point Truncate and Convert to Signed and Unsigned I nteger

FTQ

Floating-Point Round and Convert to Fixed-Point

Table 4.7 MSA Fixed-Point Instructions

Mnemonic

Instruction Description

MADD_Q, MADDR_Q

Fixed-Point Multiply and Add without and with Rounding

MSUB_Q, MSUBR_Q

Fixed-Point Multiply and Subtract without and with Rounding

MUL_Q, MULR_Q

Fixed-Point Multiply without and with Rounding

Table 4.8 MSA Branch and Compare Instructions

Mnemonic Instruction Description
BNz Branch If Not Zero
Bz Branch If Zero
CEQ, CEQI Compare Equal

CLE_S, CLEI_S, CLE_U, CLEI_U

Compare Less-Than-or-Equal Signed and Unsigned

CLT_S,CLTI_S, CLT U,CLTI U

Compare Less-Than Signed and Unsigned

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

78

4.1 Instruction Set Descriptions

Table 4.9 MSA Load/Store and Move Instructions

Mnemonic

Instruction Description

CFCMSA, CTCMSA

Copy from and copy to MSA Control Register

LD Load Vector

LDI Load Immediate

MOVE Vector to Vector Move

SPLAT, SPLATI Replicate Vector Element

FILL Fill Vector from GPR

INSERT, INSVE Insert GPR and Vector element O to Vector Element

COPY_S, COPY_U

Copy element to GPR Signed and Unsigned

ST Store Vector
Table 4.10 MSA Element Permute Instructions
Mnemonic Instruction Description
ILVEV, ILVOD Interleave Even, Odd
ILVL, ILVR Interleave the L eft, Right
PCKEV, PCKOD Pack Even and Odd Elements
SHF Set Shuffle
SLD, SLDI Element Slide
VSHF Vector shuffle
Table 4.11 Base Architecture Instructions
Mnemonic Instruction Description
LSA L eft-shift add or load/store address calculation.

4.1.2 Alphabetical List of Instructions

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

79

Vector Add Absolute Values

ADD_A.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
000 df wit ws wd
011110 010000
6 3 2 5 5 5 6
Format: ADD A.d4f
ADD_A.B wd,ws,wt
ADD A.H wd,ws,wt
ADD A.W wd,ws,wt
ADD A.D wd,ws,wt

Purpose: Vector Add Absolute Values

Vector addition to vector using the absolute values.

Description: wd[i] « absolute value(ws[i]) + absolute value(wt[i])

MSA
MSA
MSA
MSA

The absolute values of the elements in vector wt are added to the absolute values of the elements in vector ws. The
result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ADD A.B
for i in

WR([wd]g;,7. gi < abs(WR[wslgi,7. g1, 8) +

endfor

ADD A.H

for i in 0

0 .. WRLEN/8-1

WRLEN/16-1

WR[wdl 161415, 161 ¢ abs(WRIWS]i6i,15. 161/

endfor

ADD A.W

for i in 0

WRLEN/32-1

WR [wd] 351,31, 321 ¢ abs(WRIwWsSl35i,31. 321/

endfor

ADD A.D

for i in 0

WRLEN/64-1

WR[wWdl 641463, 641 ¢ abs(WRIWSlgai,63. 641/

endfor

function abs(tt, n)
if tt,; = 1 then

return -tt, ;. ¢

else

return tt, | o

endif

endfunction abs

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

abs (WR[wtlgi,7. gi-

16) + abs(WRI[wt]ligi,15. 161/

32) + abs(WRI[wtlszsi,31. 321/

64) + abs(WRIwtlgsi,e3. 6air 64)

16)

32)

80

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 81

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Saturated Add of Absolute Values

ADDS_A.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 001 of wt ws wd 010000
6 3 2 5 5 5 6

Format: ADDS A.df
ADDS A.B wd,ws,wt
ADDS A.H wd,ws,wt
ADDS A.W wd,ws,wt
ADDS A.D wd,ws,wt

Purpose: Vector Saturated Add of Absolute Values
Vector saturated addition to vector of absolute values.

Description: wd[i] « saturate signed(absolute value(ws[i]) + absolute value(wt[i]))

MSA
MSA
MSA
MSA

The absolute values of the elements in vector wt are added to the absolute values of the elements in vector ws. The

saturated signed result iswritten to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
ADDS A.B
for i in 0 .. WRLEN/8-1
WR([wdlgi,7 gi < adds_a(WR[wslgj,7 gi, WRIWtlgi,s gi,
endfor
ADDS A.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415, 161 < adds_a(WRI[ws] 65,15, 161, WRIWEI 163,15
endfor
ADDS A.W
for i in 0 .. WRLEN/32-1
WR [wd] 351,31, 321 ¢ adds_a(WR[wslj3zi,31. 321, WRIWEI355.57
endfor
ADDS A.D
for i in 0 .. WRLEN/64-1

WR [wAl 643163, 641 < adds_a(WRIwsSlgsiie3. . 6air WRIWE]gsi63

endfor

function abs(tt, n)
if tt,; = 1 then
return -tt, ; o
else
return tt, ; o
endif
endfunction abs

function sat_s(tt, n, b)
if tty,; = 0 and tt, ; p.; # 0P then

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

82

return 0°7P*l || 107t

endif

if tty,; = 1 and tty ; p.; # 1°°P*1 then
return 1%7P*1 || 0Pt

else
return tt

endif

endfunction sat_s

function adds_a(ts, tt, n)
t < (0 || abs(ts, n)) + (0 || abs(tt, n))
return sat_s(t, n+l, n)

endfunction adds_a

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 83

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Saturated Add of Signed Values

ADDS_S.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 010 of wt ws wd 010000
6 3 2 5 5 5 6

Format: ADDS s.df

ADDS _S.B wd,ws,wt
ADDS _S.H wd,ws,wt
ADDS S.W wd,ws,wt
ADDS S.D wd,ws,wt

Purpose: Vector Signed Saturated Add of Signed Values
Vector addition to vector saturating the result as signed value.

Description: wd[i] « saturate signed(signed(ws[i]) + signed(wt[i]))

MSA
MSA
MSA
MSA

The elements in vector wt are added to the elements in vector ws. Signed arithmetic is performed and overflows
clamp to the largest and/or smallest representabl e signed values before writing the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
ADDS S.B
for i in 0 .. WRLEN/8-1
WR [Wd] 81i+7..81 <« adds_s (WR [WS] 8i+7..817 WR [Wt] 81+7..817
endfor
ADDS S.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ adds_s(WRI[wS] 165,15, 161, WRIWEI 161,15, 161+
endfor
ADDS S.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ adds_s(WRI[wS]3pi,31. 321, WRIWEI35i,31. 321
endfor
ADDS_S.D
for i in 0 .. WRLEN/64-1

WR [wd] 641463, 641 ¢ adds_s(WRI[wSlgsi,63. 6a1r WRIWEIgaii63. 6ai-

endfor

function sat_s(tt, n, b)
if tty,, = 0 and tt, ; p.; # 0°P* then

return 0™P*1 || 1P-1

endif

if tt, , = 1 and tty, ; ., # 1°P*! then
return 177P*1 || oP-L

else
return tt

endif

endfunction sat_s

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

84

function adds_s(ts, tt, n)
t « (tsp.; || ts) + (ttyq || tt)
return sat_s(t, n+l, n)
endfunction adds_s

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 85

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Saturated Add of Unsigned Values

ADDS_U.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 o1l of wt ws wd 010000
6 3 2 5 5 5 6

Format: ADDS U.df
ADDS U.B wd,ws,wt
ADDS U.H wd,ws,wt
ADDS U.W wd,ws,wt
ADDS U.D wd,ws,wt

Purpose: Vector Unsigned Saturated Add of Unsigned Values
Vector addition to vector saturating the result as unsigned value.

Description: wd[i] « saturate unsigned(unsigned(ws[i]) + unsigned(wt[i]))

MSA
MSA
MSA
MSA

The elements in vector wt are added to the elements in vector ws. Unsigned arithmetic is performed and overflows

clamp to the largest representable unsigned value before writing the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
ADDS U.B
for i in 0 .. WRLEN/8-1
WR [Wd] 81i+7..81 <« adds_u (WR [WS] 8i+7..817 WR [Wt] 81+7..817
endfor
ADDS U.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ adds_u(WRI[wS]igi,15. 161, WRIWEI 161,15, 161+
endfor
ADDS U.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ adds_u(WRI[ws]3pi,31. 321, WRIWEI35i,31. 321
endfor
ADDS_U.D
for i in 0 .. WRLEN/64-1

WR [Wd] 641463, 641 ¢ adds_u(WRI[wSlgsi,63. . 6a1r WRIWEIgaii63. 6ai-

endfor

function sat_u(tt, n, b)
if tty; p # 0°° then
return 0™ || 1P
else
return tt
endif
endfunction sat_u

function adds u(ts, tt, n)
t « (0 || ts) + (0 || tt)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

86

return sat _u(t, n+l, n)
endfunction adds_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 87

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Add ADDV.df
31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 000 of wt ws wd 001110
6 3 2 5 5 5 6

Format: ADDV.df
ADDV.B wd,ws,wt
ADDV.H wd,ws,wt
ADDV.W wd,ws,wt
ADDV.D wd,ws,wt

Purpose: Vector Add
Vector addition to vector.

Description: wd[i] <« ws[i] + wt[i]

The elementsin vector wt are added to the elements in vector ws. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
ADDV.B
for i in 0 .. WRLEN/8-1
WR[wdlgi,7, gi < WRIWSlgi,g g3 + WRIWElgi,7 g1
endfor
ADDV.H
for i in 0 .. WRLEN/16-1
WR WAl 161415, 161 ¢ WRIWS]igi,15. 161 + WRIWEI 1635415, 161
endfor
ADDV.W
for i in 0 .. WRLEN/32-1
WR[wd] 355,31, .321 ¢ WRIwWSl355,31. 321 + WRIwEl3ni,31. 301
endfor
ADDV.D
for i in 0 .. WRLEN/64-1
WR WAl gai463..6a1 ¢ WRIWSlgaii63. 641 + WRIWEIgasi.63. 641
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSA
MSA
MSA
MSA

88

Immediate Add

ADDVL.df

31 26 25 23 22 21 20 16 15 11 10
MSA 15
000 df u5 ws wd
011110 000110
6 3 2 5 5 5 6
Format: ADDVI.df
ADDVI.B wd,ws,ub
ADDVI.H wd,ws,ub
ADDVI.W wd,ws,u5
ADDVI.D wd,ws,ub

Purpose: Immediate Add

Immediate addition to vector.

Description: wd [i] « ws[i] + u5

The 5-bit immediate unsigned value u5 is added to the elementsin vector ws. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ADDVI

.B

t « 0% || us, o

for i in 0

endfor

ADDVI

.H

t « o' || us, ,

for i in 0

endfor

ADDVI

W

t « 027 || us, ,

for i in 0

endfor

ADDVI

.D

t « 0°° || us, ,

for i in 0

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

. WRLEN/8-1
WR[wdlgi,7. g1 ¢ WRIwslgj,g g4 + €

WRLEN/16-1
WR[wd] 161415, 161 ¢ WRIWS] 165,15, 161

WRLEN/32-1
WRIWA] 351431, 321 < WRIWSI3pi,31. 324

WRLEN/64-1
WR WAl 641463..6a1 < WRIWSlgaiie3. 6ai

+

+

MSA
MSA
MSA
MSA

89

Vector Logical And

31 26 25 21 20 16 15 11 10
MSA VEC
011110 00000 wt ws wd 011110
6 5 5 5 5 6

Format: AND.V
AND.V wd,ws,wt

Purpose: Vector Logical And
Vector by vector logical and.

Description: wd <« ws AND wt

AND.V

MSA

Each bit of vector ws is combined with the corresponding bit of vector wt in a bitwise logical AND operation. The

result is written to vector wd.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

WR[wd] <« WR[ws] and WR[wt]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

90

Immediate Logical And ANDI.B

31 26 25 24 23 16 15 11 10 6 5 0
MSA . 18
011110 00 18 ws wd 000000
6 2 8 5 5 6

Format: ANDI.B

ANDI.B wd,ws,i8 MSA
Purpose: Immediate Logical And
Immediate by vector logical and.

Description: wd[i] <« ws[i] AND is8

Each byte element of vector ws is combined with the 8-bit immediate i8 in a bitwise logical AND operation. The
result is written to vector wd.

The operands and results are values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:
for i in 0 .. WRLEN/8-1
WR [Wd] 8i+7..81 <« WR[WS] 8i+7 - .81 and i87..0
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 91

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Absolute Values of Signed Subtract

ASUB_S.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 100 of wt ws wd 010001
6 3 2 5 5 5 6

Format: AsSUB_s.df

ASUB _S.B wd,ws,wt
ASUB S.H wd,ws,wt
ASUB S.W wd,ws,wt
ASUB S.D wd,ws,wt

Purpose: Vector Absolute Values of Signed Subtract

Vector subtraction from vector of signed values taking the absolute value of the results.

Description: wd[i] « absolute value(signed(ws[i]) - signed(wt[i]))

MSA
MSA
MSA
MSA

The signed elements in vector wt are subtracted from the signed elements in vector ws. The absolute value of the

signed result iswritten to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
ASUB S.B
for i in 0 .. WRLEN/8-1
WR [Wd] 81i+7..81 <« aSub_S (WR [WS] 8i+7..817 WR [Wt] 81+7..817
endfor
ASUB_S.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ asub_s(WRI[wS]igi,15. 161, WRIWEI 161,15, 161+
endfor
ASUB S.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ asub_s(WRI[wS]3pi,31. 321, WRIWEI35i,31. 321
endfor
ASUB_S.D
for i in 0 .. WRLEN/64-1

WR [Wd] 641463, 641 ¢ asub_s(WRI[wSlgsi,63. 6a1r WRIWEIgaii63. 6ai-

endfor

function asub_s(ts, tt, n)
t « (tsp.q || ts) - (ttyq || tt)
if t, = 0 then
return t,_ ¢
else
return (-t),.1. .o
endfunction asub_s

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

92

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 93

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Absolute Values of Unsigned Subtract ASUB_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 101 of wt ws wd 010001
6 3 2 5 5 5 6

Format: AsSuB U.df

ASUB _U.B wd,ws,wt MSA
ASUB U.H wd,ws,wt MSA
ASUB U.W wd,ws,wt MSA
ASUB _U.D wd,ws,wt MSA

Purpose: Vector Absolute Values of Unsigned Subtract

Vector subtraction from vector of unsigned values taking the absol ute value of the results.

Description: wd[i] « absolute value(unsigned(ws[i]) - unsigned(wt[i]))

The unsigned elements in vector wt are subtracted from the unsigned elements in vector ws. The absolute value of the
signed result iswritten to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
ASUB U.B
for i in 0 .. WRLEN/8-1
WR [Wd] 81i+7..81 <« asub_u (WR [WS] 8i+7..817 WR [Wt] 81+7..817 8)
endfor
ASUB U.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415..161 ¢ asub_u(WRIwS]ligi,15. 161, WRIWEI 163415 161, 16)
endfor
ASUB U.W
for i in 0 .. WRLEN/32-1
WR[wd] 351,31, .321 ¢ asub_u(WRI[ws]l3pi,31. 324, WRIWEI353i,31. 321, 32)
endfor
ASUB U.D
for i in 0 .. WRLEN/64-1
WR [wdl g4i163. 641 ¢ asub_u(WRIwSlesire3. 62ir WRIWElgsii63. 641/ 64)
endfor

function asub u(ts, tt, n)
t « (0 |] ts) - (0 || tt)
if t, = 0 then
return t,_ ¢
else
return (-t),.1. .o
endfunction asub_s

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 94

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 95

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Average AVE_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 100 of wt ws wd 010000
6 3 2 5 5 5 6

Format: AVE s.df

AVE S.B wd,ws,wt
AVE S.H wd,ws,wt
AVE S.W wd,ws,wt
AVE S.D wd,ws,wt

Purpose: Vector Signed Average
Vector average using the signed values.

Description: wd [1] « (ws[i] + wt[i]l) / 2

MSA
MSA
MSA
MSA

The elements in vector wt are added to the elements in vector ws. The addition is done signed with full precision, i.e.
the result has one extra bit. Signed division by 2 (or arithmetic shift right by one bit) is performed before writing the

result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
AVE S.B
for i in 0 .. WRLEN/8-1
WR([wd]g;,7. . g1 ¢« ave_s(WR[wslgi,7 gi, WR[wtlgi,;..81, 8)
endfor
AVE S.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ ave_s (WRIwSligii15. .16ir WRIWE] 165,15, 161, 16)
endfor
AVE S.W
for i in 0 .. WRLEN/32-1
WR [wd] 355431, .321 ¢ ave_s(WRIwslspi,31. 321, WRIWE]355,31. 325, 32)
endfor
AVE S.D
for i in 0 .. WRLEN/64-1
WR[wdlgsi463. 641 ¢ ave_s(WRIWSlggii63. 641/ WRIWEIgai,63. 621, 64)
endfor

function ave_s(ts, tt, n)
t « (tsp.; || ts) + (ttyq || tt)
return t, -

endfunction ave_s

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

96

Vector Unsigned Average AVE_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 101 of wt ws wd 010000
6 3 2 5 5 5 6

Format: AVE U.df

AVE U.B wd,ws,wt MSA
AVE U.H wd,ws,wt MSA
AVE U.W wd,ws,wt MSA
AVE U.D wd,ws,wt MSA

Purpose: Vector Unsigned Average

Vector average using the unsigned values.

Description: wd [1] « (ws[i] + wt[i]l) / 2

The elements in vector wt are added to the elements in vector ws. The addition is done unsigned with full precision,
i.e. theresult has one extra bit. Unsigned division by 2 (or logical shift right by one bit) is performed before writing
the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
AVE U.B
for i in 0 .. WRLEN/8-1
WR [Wd] 8i+7..81 <« ave_u(WR [WS] 8i+7..81r WR [Wt] 8i+7. .81 8)
endfor
AVE U.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ ave_u(WRIwWSligii15. 161, WRIWE] 165,15, 161, 16)
endfor
AVE U.W
for i in 0 .. WRLEN/32-1
WR[wd] 355431, .321 ¢ ave_u(WRIwslspi,31. 321, WRIWE]355,31. 325, 32)
endfor
AVE U.D
for i in 0 .. WRLEN/64-1
WR [Wdl 641463, 641 ¢ ave_u(WRIwSlgaii63. 6air WRIWE]gai,63. 645/ 64)
endfor

function ave_u(ts, tt, n)
t « (0]|] ts) + (0 ||
return t, -

endfunction ave u

tt)

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 97

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Average Rounded

AVER_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 10 | df wt ws wd 010000
6 3 2 5 5 5 6
Format: AVER S.df
AVER_S.B wd,ws,wt MSA
AVER_S.H wd,ws,wt MSA
AVER _S.W wd,ws,wt MSA
AVER S.D wd,ws,wt MSA

Purpose: Vector Signed Average Rounded
Vector average rounded using the signed values.

Description: wd [i] « (ws[i] + wt[i] + 1) / 2

The elementsin vector wt are added to the elementsin vector ws. The addition of the elements plus 1 (for rounding) is
done signed with full precision, i.e. the result has one extra bit. Signed division by 2 (or arithmetic shift right by one

bit) is performed before writing the result to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
AVER S.B
for i in 0 . WRLEN/8-1
WR([wd]g;,7. . g1 < aver s (WR[wslgi,7. .gi/
endfor
AVER S.H
for i in 0 . WRLEN/16-1
WR [wdl 161415, 161 < aver_s (WRI[wsligi,gs
endfor
AVER S.W
for i in 0 . WRLEN/32-1
WR [wd]l 333431, 321 ¢ aver_s (WR[wslspj,3
endfor
AVER S.D
for i in 0 . WRLEN/64-1
WR [wdl g4i163. 641 ¢ aver_s (WRIwslgysi,63

endfor

function ave_s(ts, tt, n)
t « (tspq; || ts) + (ttyq || tt) + 1
return t, -

endfunction aver s

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD

WR[wtlgi,7. .81, 8)

.. 161 WRIWEIi6i,15. 161, 16)
c.3210 WRIWEIs5ii31. 3210 32)
c.6air WRIWEIgai,63. 621, 64)

Architecture Module, Revision 1.12 98

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Average Rounded

AVER_U.df

31 26 25 23 22 21 20 16 15 11 10 0
MSA 3R
011110 1l of wt ws wd 010000
6 3 2 5 5 5 6

Format: AVER U.df
AVER U.B wd,ws,wt
AVER U.H wd,ws,wt
AVER U.W wd,ws,wt
AVER U.D wd,ws,wt

Purpose: Vector Unsigned Average Rounded

Vector average rounded using the unsigned values.

Description: wd [i] « (ws[i] + wt[i] + 1) / 2

MSA
MSA
MSA
MSA

The elementsin vector wt are added to the elementsin vector ws. The addition of the elements plus 1 (for rounding) is
done unsigned with full precision, i.e. the result has one extra bit. Unsigned division by 2 (or logical shift right by

one hit) is performed before writing the result to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
AVER U.B
for i in 0 .. WRLEN/8-1
WR([wd]g;,7. g1 < aver u(WR[wslgi,7. .gi/
endfor
AVER U.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415, 161 ¢ aver_u(WR[ws]igi,15
endfor
AVER U.W
for i in 0 .. WRLEN/32-1
WR [wd] 351,31, .321 ¢ aver_u(WR[wsljzai,3
endfor
AVER U.D
for i in 0 .. WRLEN/64-1
WR [wdl 643163, 641 ¢ aver_u(WRI[wslgsj,63
endfor

function ave_u(ts, tt, n)
t « (0]|] ts) + (0 ||
return t, -

endfunction aver u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

tt) + 1

WRwtlgi,7. gis

..161r WRIWEI 63,15, 16i-

c.3210 WRIWEISoii31. 3210

c.6air WRIWEIgaii63. 6ai-

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 99

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Bit Clear

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 o1l of wt ws wd 001101
6 3 2 5 5 5 6

Format: BCLR.df
BCLR.B wd,ws,wt
BCLR.H wd,ws,wt
BCLR.W wd,ws,wt
BCLR.D wd,ws,wt

Purpose: Vector Bit Clear

Vector selected bit position clear in each element.

Description: wd [i] « bit clear(ws[i], wt[il)

BCLR.df

MSA
MSA
MSA
MSA

Clear (set to 0) one hit in each element of vector ws. The bit position is given by the elementsin wt modulo the size

of the element in bits. The result is written to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
BCLR.B
for i in 0 .. WRLEN/8-1
t < WRI[wtlgi,o. .si
WR[wd] gi,7 g < WRIwslgi,y gy and (17°° || 0 || 1%)
endfor
BCLR.H
for i in 0 .. WRLEN/16-1
t « WRIWtligi,3. 161
WR[wd] 1635415, 161 < WRIWS] 11,15, 161 and (17°7° || 0 [] 1%)
endfor
BCLR.W
for i in 0 .. WRLEN/32-1
t « WRIWtl3pi,.4. 321
WR[Wd] 351,31, 321 ¢ WRIWSl3pi,31. 324 and (1Y% [[o [] 1%)
endfor
BCLR.D
for i in 0 .. WRLEN/64-1
t « WRIwtlgsiis, gai
WR[Wd] 641463, 621 < WRIWSlgai,63. 643 and (1%°°° || 0 [] 1%)
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

100

Immediate Bit Clear

BCLRI.df

31 26 25 23 22 16 15 11 10
MSA BIT
011110 o1l df/m ws wd 001001
6 3 7 5 5 6

Format: BCLRI.df
BCLRI.B wd,ws,m

BCLRI.H wd,ws,m
BCLRI.W wd,ws,m
BCLRI.D wd,ws,m

Purpose: Immediate Bit Clear
Immediate selected bit position clear in each element.

Description: wd[i] « bit clear(ws[i], m)

MSA
MSA
MSA
MSA

Clear (set to 0) one bit in each element of vector ws. The bit position is given by the immediate m modul o the size of

the element in bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BCLRI.B
t < m
for i in 0 .. WRLEN/8-1
WR[wd] gi,7 g < WRIwslgi,y gy and (17°° || 0 || 1%)
endfor

BCLRI.H
t < m
for i in 0 .. WRLEN/16-1
15-t t
WR[wd] 161415..161 < WRIWS]igi,15 163 and (1 [o [] 1%)
endfor

BCLRI.W
t < m
for i in 0 .. WRLEN/32-1
31-t t
WR [wdl 351431, .321 ¢ WRIWSl3pi,37. 323 and (1 [l o [] 1%
endfor

BCLRI.D
t < m
for i in 0 .. WRLEN/64-1
63-t t
WR[wdlggi463..641 < WRIWSlggi,63. 641 and (1 [l o] 1%)
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

101

Vector Bit Insert Left BINSL.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 110 of wt ws wd 001101
6 3 2 5 5 5 6

Format: BINSL.df

BINSL.B wd,ws,wt MSA
BINSL.H wd,ws,wt MSA
BINSL.W wd,ws,wt MSA
BINSL.D wd,ws,wt MSA

Purpose: Vector Bit Insert Left
Vector selected left most bits copy while preserving destination right bits.

Description: wd [i] « bit insert left(wd[i], ws[i], wtl[il)

Copy most significant (left) bitsin each element of vector ws to elements in vector wd while preserving the least sig-
nificant (right) bits. The number of bitsto copy is given by the elementsin vector wt modulo the size of the element in
bits plus 1.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BINSL.B
for i in 0 .. WRLEN/8-1
t < WRIwtlgi,n g3
WR[wdlgi,r. gi < WRIWSlgi,s giyr-t || WRIWAIgii7co1. 83
endfor

BINSL.H
for i in 0 .. WRLEN/16-1
t « WRIWtligi,3. 161

WR[wdl 165415, 165 < WRIWSIi6i415. .161415-¢ || WRIWAI16i415-¢-1. 161
endfor

BINSL.W
for i in 0 .. WRLEN/32-1
t « WRIWtl3pi,4. 321

WRIwd] 325431, .32 ¢ WRIWSI3oi431. 321431-¢ || WRIWAI32i431-e-1. 321
endfor

BINSL.D
for i in 0 .. WRLEN/64-1
t « WRIwtlgsiis, gai

WR[wdlgais63. 641 < WRIWSIgaire3. . 6ais63-t || WRIWAlgaiie3-t-1. 641
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 102

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Bit Insert Left

BINSLI.df

31 26 25 23 22 16 15 11 10 6 5
MSA BIT
011110 110 df/m ws wd 001001
6 3 7 5 5 6

Format: BINSLI.df
BINSLI.B wd,ws,m

BINSLI.H wd,ws,m
BINSLI.W wd,ws,m
BINSLI.D wd,ws,m

Purpose: Immediate Bit Insert Left
Immediate selected |eft most bits copy while preserving destination right bits.

Description: wd[i] « bit insert left(wd[i], ws[i], m)

MSA
MSA
MSA
MSA

Copy most significant (left) bitsin each element of vector ws to elements in vector wd while preserving the least sig-
nificant (right) bits. The number of bits to copy is given by the immediate m modulo the size of the element in bits

plus 1.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BINSLI.B
t < m
for i in 0 .. WRLEN/8-1
WR[wdlgi 7. g3 ¢ WRIWSlgi,7 gir7-c || WRIWdlgi7.co1. 83
endfor

BINSLI.H
t < m
for i in 0 .. WRLEN/16-1

WR[wd] 165415, 165 < WRIWSIi6i415. .161415-t || WRIWAI16i415-¢-1. 161
endfor

BINSLI.W
t < m
for i in 0 .. WRLEN/32-1

WRIwd] 325,31, .32 ¢ WRIWSI3oi431. 321431-¢ || WRIWAI32i431-¢-1. 321
endfor

BINSLI.D
t < m
for i in 0 .. WRLEN/64-1

WR[wdlgair63. 641 < WRIWSIgaire3. . 6aise3-t || WRIWAIgaiie3-t-1. 641
endfor

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

103

Vector Bit Insert Right BINSR.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 1l of wt ws wd 001101
6 3 2 5 5 5 6

Format: BINSR.df

BINSR.B wd,ws,wt MSA
BINSR.H wd,ws,wt MSA
BINSR.W wd,ws,wt MSA
BINSR.D wd,ws,wt MSA

Purpose: Vector Bit Insert Right
Vector selected right most bits copy while preserving destination |eft bits.

Description: wd[i] « bit insert right(wd[il, ws[i], wt[i])

Copy least significant (right) bitsin each element of vector ws to elementsin vector wd while preserving the most sig-
nificant (left) bits. The number of bitsto copy is given by the elements in vector wt modulo the size of the element in
bits plus 1.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BINSR.B
for i in 0 .. WRLEN/8-1
t < WRIwtlgi,n g3
WR[wdlgi,r. g1 < WRIwdlgi,s gises1 || WRIWSIgiie. g3
endfor

BINSR.H
for i in 0 .. WRLEN/16-1
t « WRIWtligi,3. 161

WRwd] 165415, 165 < WRIWAl 165415, 161+t41 || WRIWSI16i4e. 161
endfor

BINSR.W
for i in 0 .. WRLEN/32-1
t « WRIWtl3pi,4. 321

WRIwWA] 325431, .32 ¢ WRIWAI30i431. 3214641 || WRIWSI3oi4e. 321
endfor

BINSR.D
for i in 0 .. WRLEN/64-1
t « WRIwtlgsiis, gai

WRIwdlgais63. 641 < WRIWAlgaire3. . 6aists1 || WRIWSIgaire. 6ai
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 104

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Bit Insert Right

BINSRI.df

31 26 25 23 22 16 15 11 10
MSA BIT
011110 1l df/m ws wd 001001
6 3 7 5 5 6

Format: BINSRI.df
BINSRI.B wd,ws,m

BINSRI.H wd,ws,m
BINSRI.W wd,ws,m
BINSRI.D wd,ws,m

Purpose: Immediate Bit Insert Right
Immediate selected right most bits copy while preserving destination |eft bits.

Description: wd[i] « bit insert right (wd[il, ws[i], m)

MSA
MSA
MSA
MSA

Copy least significant (right) bitsin each element of vector ws to elementsin vector wd while preserving the most sig-
nificant (left) bits. The number of bitsto copy is given by the immediate m modulo the size of the element in bits plus

1
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BINSRI.B
t < m
for i in 0 .. WRLEN/8-1
WR[wdlgi,r. g1 < WRIwdlgi,g gisreesr || WRIWSIlgiie g3
endfor

BINSRI.H
t < m
for i in 0 .. WRLEN/16-1

WRwd] 165415, 165 < WRIWAl 165415, 161+t+1 || WRIWSI16i4e. 161
endfor

BINSRI.W
t < m
for i in 0 .. WRLEN/32-1

WRIWA] 325431, .32 < WRIWAI30i431. 3214641 || WRIWSI3oi4e. 323
endfor

BINSRI.D
t < m
for i in 0 .. WRLEN/64-1

WR WAl gais63. . 64: < WRIWAlgair63. . 6aists1 || WRIWSIgaire. 6ai
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

105

Vector Bit Move If Not Zero BMNZ.V

31 26 25 21 20 16 15 11 10 6 5 0
MSA VEC
011110 00100 wt ws wd 011110
6 5 5 5 5 6

Format: BMNZ.V

BMNZ.V wd,ws,wt MSA
Purpose: Vector Bit Move If Not Zero
Vector mask-based copy bits on the condition mask being set.

Description: wd « (ws AND wt) OR (wd AND NOT wt)

Copy to destination vector wd all bits from source vector ws for which the corresponding bits from target vector wt
are 1 and leaves unchanged all destination bits for which the corresponding target bits are O.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

WR[wd] <« (WR[ws] and WR[wt]) or (WR[wd] and not WR[wt])

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 106

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Bit Move If Not Zero BMNZI.B

31 26 25 24 23 16 15 11 10 6 5 0
MSA . 18
011110 00 18 ws wd 000001
6 2 8 5 5 6

Format: BMNZI.B

BMNZI.B wd,ws, 18 MSA
Purpose: Immediate Bit Move If Not Zero
Immediate mask-based copy bits on the condition mask being set.

Description: wd[i] « (ws[i] AND i8) OR (wd[i] AND NOT i8)

Copy to destination vector wd all bits from source vector ws for which the corresponding bits from immediate i8 are 1
and leaves unchanged all destination bits for which the corresponding immediate bits are O.

The operands and results are vector values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:

WR[wd] < (WR[wslgi,7 gy and i8,) or (WR[wdlgi,; g; and not i8,;)

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 107

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Bit Move If Zero BMZ.V

31 26 25 21 20 16 15 11 10 6 5 0
MSA VEC
011110 00101 wt ws wd 011110
6 5 5 5 5 6

Format: BMZ.V

BMZ.V wd,ws,wt MSA
Purpose: Vector Bit Move If Zero
Vector mask-based copy bits on the condition mask being clear.

Description: wd « (ws AND NOT wt) OR (wd AND wt)

Copy to destination vector wd all bits from source vector ws for which the corresponding bits from target vector wt
are 0 and leaves unchanged all destination bits for which the corresponding target bits are 1.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

WR[wd] <« (WR[ws] and not WR[wt]) or (WR[wd] and WR[wt])

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 108

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Bit Move If Zero BMZI.B

31 26 25 24 23 16 15 11 10 6 5 0
MSA . 18
011110 01 18 ws wd 000001
6 2 8 5 5 6

Format: BMZI.B

BMZI.B wd,ws,i8 MSA
Purpose: Immediate Bit Move If Zero
Immediate mask-based copy bits on the condition mask being clear.

Description: wd[i] « (ws[i] AND NOT i8) OR (wd[i] AND i8)

Copy to destination vector wd all bits from source vector ws for which the corresponding bits from immediate i8 are 0
and leaves unchanged all destination bits for which the corresponding immediate bits are 1.

The operands and results are vector values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:

WR[wd] <« (WR[ws] and not i8, () or (WR[wd] and i8,;)

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 109

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Bit Negate

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 101 of wt ws wd 001101
6 3 2 5 5 5 6

Format: BNEG.df
BNEG.B wd,ws,wt
BNEG.H wd,ws,wt
BNEG.W wd,ws,wt
BNEG.D wd,ws,wt

Purpose: Vector Bit Negate
Vector selected bit position negate in each element.

Description: wd[i] « bit negate(ws[i], wt[i])

BNEG.df

MSA
MSA
MSA
MSA

Negate (complement) one bit in each element of vector ws. The bit position is given by the elementsin wt modulo the

size of the element in bits. The result is written to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BNEG.B
for i in 0 .. WRLEN/8-1
t < WRIwtlgi,n g3
WR[wd] gi,7. g1 < WRIwslgi,y gy xor (07°° || 1 || 0F)
endfor

BNEG.H
for i in 0 .. WRLEN/16-1
t <« WRIwWtli6is3. 161
WR[wd] 1635415, 161 < WRIWS] 11,15, 161 ¥0r (07°7° || 1 || 0F)
endfor

BNEG.W
for i in 0 .. WRLEN/32-1
€« WRIwWtl3zi,4. 321
WR[Wd] 351,31, 321 ¢ WRIWSl3pi,31. 324 xor (0°1°° [[1 [] 0F)
endfor

BNEG.D
for i in 0 .. WRLEN/64-1
€« WRIwWtlgqiss. 621
WR [Wd] 611463, 621 < WRIWSlgai,63. 603 ¥0r (0°°°° || 1 || 0F)
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

110

Immediate Bit Negate

BNEGI.df

31 26 25 23 22 16 15 11 10
MSA BIT
011110 101 df/m ws wd 001001
6 3 7 5 5 6

Format: BNEGI.df
BNEGI.B wd,ws,m

BNEGI.H wd,ws,m
BNEGI.W wd,ws,m
BNEGI.D wd,ws,m

Purpose: |mmediate Bit Negate
Immediate selected bit position negate in each element.

Description: wd[i] « bit negate(ws[i], m)

MSA
MSA
MSA
MSA

Negate (complement) one bit in each element of vector ws. The bit position is given by the immediate m modulo the

size of the element in bits. The result is written to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BNEGI.B
t < m
for i in 0 .. WRLEN/8-1
WR[wd] gi,7 g < WRIwslgi,y gy xor (07°° || 1 || 0%)
endfor

BNEGI.H
t < m
for i in 0 .. WRLEN/16-1
15-t t
WR[wd] 161415..161 < WRIWS]igi,15. 161 XOr (O [1]] 0%
endfor

BNEGI.W
t < m
for i in 0 .. WRLEN/32-1
31-t t
WR [wd] 351431, .321 ¢ WRIWSl3p3,31. 321 XOr (0 [l 1 1] 0%
endfor

BNEGI.D
t < m
for i in 0 .. WRLEN/64-1
63-t t
WR[wdlggi463..641 < WRIWSlggi,63. 641 XOr (O [l 1] 0%
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

111

Immediate Branch If All Elements Are Not Zero BNZ.df
31 26 25 23 22 21 20 16 15 0
COP1
010001 111 df wi sl6
6 3 2 5 16
Format: BNZz.df
BNZ.B wt,slé6 MSA
BNZ.H wt,sl6 MSA
BNZ.W wt,sl6 MSA
BNZ.D wt,slé MSA

Purpose: Immediate Branch If All Elements Are Not Zero
Immediate PC offset branch if all destination elements are not zero.

Description: if wt[i] # 0 for all i then branch PC-relative s16

PC-relative branch if all elementsin wt are not zero.

The branch instruction has adelay slot. s16 isaPC word offset, i.e. signed count of 32-bit instructions, from the PC

of the delay dot.

Restrictions:

Processor operation is UNPREDICTABLE if abranchis placed in the delay slot of abranch or jump.

Operation:

BNZ.B
branch (WR([wt]lg;,7 g1 # 0 for all i,

BNZ.H

branch (WR[wt] gi,15. 165 # 0 for all i,

BNZ.W

branch (WR([wt];5i,31. 321 # 0 for all i,

BNZ.D

branch (WR[wtlgsi,63..64i # 0 for all i,

function branch(cond, offset)
if cond then

I: target_offset < (offsety) FRIEN-12 || offgsety , || 0772

I+l: PC < PC + target offset
endif
endfunction branch

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 112

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Branch If Not Zero (At Least One Element of Any Format Is Not Zero) BNZ.V

31 26 25 21 20 16 15 0
COP1
010001 01111 wt sl6
6 5 5 16

Format: BNZ.V

BNZ.V wt,slé6 MSA
Purpose: Immediate Branch If Not Zero (At Least One Element of Any Format Is Not Zero)
Immediate PC offset branch if destination vector is not zero.

Description: if wt # 0 then branch PC-relative sl16

PC-relative branch if at least one bit in wt is not zero, i.e at least one element is not zero regardless of the dataformat.
The branch instruction has adelay dot. s16 isa PC word offset, i.e. signed count of 32-bit instructions, from the PC

of the delay dlot.

Restrictions:

Processor operation is UNPREDICTABLE if abranch is placed in the delay slot of a branch or jump.

Operation:

branch (WR [wt] # 0, s16)

function branch(cond, offset)
if cond then

I: target offset « (offsety)CFRUEN-12 || offgety , || 0772
I+l: PC < PC + target offset
endif

endfunction branch

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 113

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Bit Select BSEL.V

31 26 25 21 20 16 15 11 10 6 5 0
MSA VEC
011110 00110 wt ws wd 011110
6 5 5 5 5 6

Format: BSEL.V
BSEL.V wd,ws,wt MSA

Purpose: Vector Bit Select
Vector mask-based copy bits from two source vectors selected by the bit mask value

Description: wd « (ws AND NOT wd) OR (wt AND wd)

Selectively copy bits from the source vectorsws and wt into destination vector wd based on the corresponding bit
inwd: if O copiesthe bit fromws, if 1 copies the bit from wt.

Restrictions:

The operands and results are bit vector values.

Operation:

WR[wd] <« (WR[ws] and not WR[wd]) or (WR[wt] and WR[wd])

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 114

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Bit Select BSELI.B

31 26 25 24 23 16 15 11 10 6 5 0
MSA . 18
011110 10 18 ws wd 000001
6 2 8 5 5 6

Format: BSELI.B

BSELI.B wd,ws,i8 MSA
Purpose: Immediate Bit Select
Immediate mask-based copy bits from two source vectors selected by the bit mask value

Description: wd « (ws AND NOT wd) OR (i8 AND wd)

Selectively copy bits from the the 8-bit immediate i8 and source vector ws into destination vector wd based on the
corresponding bit in wd: if O copiesthe bit from ws, if 1 copiesthe bit from i8.

Restrictions:

The operands and results are bit vector values.

Operation:

for i in 0 .. WRLEN/8-1
WR[wdlgi,7. g1 <
(WR [ws]lgj,7. gi and not WR[wdlgi,; gi) or (i8; , and WR[wdlg;,7 gi)
endfor

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 115

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Bit Set

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 100 of wt ws wd 001101
6 3 2 5 5 5 6

Format: BSET.df
BSET.B wd,ws,wt
BSET.H wd,ws,wt
BSET.W wd,ws,wt
BSET.D wd,ws,wt

Purpose: Vector Bit Set
Vector selected bit position set in each element.

Description: wd[i] « bit_set (ws[i], wt[il])

BSET.df

MSA
MSA
MSA
MSA

Set to 1 one bit in each element of vector ws. The bit position is given by the elements in wt modulo the size of the

element in bits. The result iswritten to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BSET S.B
for i in 0 .. WRLEN/8-1
t « WR[Wt]8i+2..8i

WR[wdlgs 7. g5 < WRIWSlgip g or (07°° [| 1 [[0F)

endfor

BSET S.H
for i in 0 .. WRLEN/16-1
t « WRIWt]ligi,3. 161

WR[wd] 161415, 161 ¢ WRIWS]1gi.15. 161
endfor

BSET S.W
for i in 0 .. WRLEN/32-1
t « WRIWtl3pi,4. 321

WRIWA] 321431, 321 ¢ WRIWSI3pi,31. 321
endfor

BSET_S.D
for i in 0 .. WRLEN/64-1
t « WRIwtlgsiis, gai

WR WAl 641463..6a1 < WRIWSlgaiie3. 6ai
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

or (0¥t || 1 || oY

or (02 || 1 |] 0%

or (0% % || 1 |] 0%

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

116

Immediate Bit Set

31 26 25 23 22 16 15 11 10 6 5

BSETI.df

MSA

011110 100 df/m ws wd

BIT
001001

6 3 7 5 5

Format: BSETI.df
BSETI.B wd,ws,m
BSETI.H wd,ws,m
BSETI.W wd,ws,m
BSETI.D wd,ws,m

Purpose: Immediate Bit Set
Immediate selected bit position set in each element.

Description: wd[i] « bit_set(ws[i], m)

Set to 1 one hit in each element of vector ws. The bit position is given by the immediate m.
vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

BSETI_S.B
t < m
for i in 0 .. WRLEN/8-1
WR[wd] gi,7 g < WR[wSlgi,y gy or (07 || 1 || 0%
endfor

BSETI_S.H
t < m
for i in 0 .. WRLEN/16-1
15-t t
WR[wd] 161415..161 < WRIWS] 165,415, 165 O (O [1 [] 0%
endfor

BSETI_S.W
t < m
for i in 0 .. WRLEN/32-1

31-t t
WR [wdl 355431..321 ¢ WRIWSl3pi,31. 321 O (O [l 1] 0%
endfor

BSETI_S.D
t < m
for i in 0 .. WRLEN/64-1

63-t t
WR[wdlgsi463..641 < WRIWSlggi,63. 641 O (O [l 1] 0%
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

6

The result

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

MSA
MSA
MSA
MSA

is written to

117

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Branch If At Least One Element Is Zero BZ.df

31 26 25 23 22 21 20 16 15 0
COP1
010001 110 df wt sl6
6 3 2 5 16

Format: BZz.df

BZ.B wt,slé6 MSA
BzZ.H wt,slé6 MSA
Bz.W wt,slé6 MSA
BZ.D wt,sl6 MSA

Purpose: Immediate Branch If At Least One Element Is Zero
Immediate PC offset branch if at |east one destination e ement is zero.

Description: if wt[i] = 0 for some i then branch PC-relative s16
PC-relative branch if at least one element in wt is zero.
The branch instruction has adelay slot. s16 isaPC word offset, i.e. signed count of 32-bit instructions, from the PC
of the delay dot.
Restrictions:

Processor operation is UNPREDICTABLE if abranchis placed in the delay slot of abranch or jump.

Operation:
BZ.B
for 1 in 0 .. WRLEN/8-1
branch (WR [wt]gi,7. g3 = 0, s16)
endfor
BZ.H
for 1 in 0 .. WRLEN/16-1
branch (WR [wt] ¢i,15. 161 = 0, S16)
endfor
BZ.W
for i in 0 .. WRLEN/32-1
branch (WR[wt] 354,37 32;1 = 0, s16)
endfor
BZ.D
for i in 0 .. WRLEN/64-1
branch (WR[wtlgsi,63. .64ai = 0, s16)
endfor

function branch(cond, offset)
if cond then

I: target offset « (offsety) FRUEN12 || offget, , || 0°"2
I+l: PC « PC + target offset
endif

endfunction branch

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 118

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Branch If Zero (All Elements of Any Format Are Zero) BZ.V

31 26 25 21 20 16 15 0
COP1
010001 01011 wt sl6
6 5 5 16

Format: Bz.V

BZ.V wt,slé6 MSA
Purpose: Immediate Branch If Zero (All Elements of Any Format Are Zero)
Immediate PC offset branch if destination vector is zero.

Description: if wt = 0 then branch PC-relative sl16
PC-relative branch if all wt bits are zero, i.e. all elements are zero regardless of the data format.
The branch instruction has adelay dlot. s16 isa PC word offset, i.e. signed count of 32-bit instructions, from the PC
of the delay dlot.
Restrictions:

Processor operation is UNPREDICTABLE if abranch is placed in the delay slot of a branch or jump.

Operation:

branch (WR[wt] = 0, s16)

function branch(cond, offset)
if cond then

I: target offset « (offsety)CFRUEN-12 || offgety , || 0772
I+l: PC < PC + target offset
endif

endfunction branch

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 119

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Compare Equal CEQ.df
31 26 25 23 22 21 20 16 15 11 10 0
MSA 3R
011110 0o | df wt ws wd 001111
6 3 2 5 5 5 6
Format: CEQ.df
CEQ.B wd, ws,wt MSA
CEQ.H wd,ws,wt MSA
CEQ.W wd,ws,wt MSA
CEQ.D wd,ws,wt MSA

Purpose: Vector Compare Equal

Vector to vector compare for equality; if true all destination bits are set, otherwise clear.

Description: wd [1] « (ws[i] = wt[i])

Set dl bitsto 1 in wd elementsif the corresponding ws and wt elements are equal, otherwise set all bitsto 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CEQ.B
for i in 0 .. WRLEN/8-1
C ¢« WR([wslgij,7 gi = WRIWtlgi, 7 g3
WR[wdlgi 7 g « c®
endfor

CEQ.H
for i in 0 .. WRLEN/16-1
¢ « WRIwWSligi,15. 161 = WRIWE] 165,15, 161
WR[wd] 165415, 161 < C
endfor

CEQ.W
for i in 0 .. WRLEN/32-1
¢ « WRIwWSl3pi,31. 328 = WRIWEI 355,31, 321
WR [wdl 351431..321 ¢ C
endfor

CEQ.D
for i in 0 .. WRLEN/64-1
¢ < WRIwWSlggire3.. 641 = WRIWEIgai463. 641
WR [wd] 641463, 621 < C°*
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

120

Immediate Compare Equal

31 26 25 23 22 21 20 16 15 11 10
MSA I5
011110 000 of 5 ws wd 000111
6 3 2 5 5 5 6

Format: CEQI.df

CEQI.B wd,ws, s5
CEQI.H wd,ws, s5
CEQI.W wd,ws, s5
CEQI.D wd,ws,s5

Purpose: Immediate Compare Equal

Immediate to vector compare for equality; if true all destination bits are set, otherwise clear.

Description: wd[i] <« (ws[i] = s5)

CEQl.df

MSA
MSA
MSA
MSA

Set all bitsto 1 inwd elements if the corresponding ws element and the 5-bit signed immediate s5 are equal, other-

wise set dl bitsto 0.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CEQI.B
t « (s54)% || s5, o
for i in 0 .. WRLEN/8-1
C « WR[wslgj,7 g4 =t
WR [wd]gs 7, g5 ¢ c®
endfor

CEQI.H
t « (85 || s5,
for i in 0 .. WRLEN/16-1
Cc < WRI[wS]igi415. 161 = €
WR [wd] 161415..161 ¢ ©
endfor

CEQI.W
£« (s54)% || 854 ¢
for i in 0 .. WRLEN/32-1
¢ « WR[wS]3pi,37. .32 = €
WR[wd] 351431..321 ¢ C
endfor

CEQI.D
£« (854)°7 || s54 ¢
for i in 0 .. WRLEN/64-1
¢ < WR[wSlgsii63.. 641 = t
WR [wd] gai463. 621 < C°°
endfor

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

121

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 122

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

GPR Copy from MSA Control Register

31 26 25 16 15

CFCMSA

MSA

011110 0001111110

rd

ELM
011001

6 10

Format: cCFcMsA
CFCMSA rd,cs

Purpose: GPR Copy from MSA Control Register
GPR value copied from MSA control register.

Description: rd « cs

The content of MSA control register cs is copied to GPR rd.

Restrictions:

6

MSA

The read operation returns ZERO if ¢s specifies areserved register or aregister that does not exist.

Operation:

if ¢s = 0 then
GPR [rd] <« MSAIR
elseif cs = 1 then
GPR [rd] <« MSACSR
elseif MSAIRygp = 1 then
if ¢s = 2 then
if not IsCoprocessorEnabled(0) then

SignalException (CoprocessorUnusableException,

endif
GPR [rd] <« MSAAccess
elseif cs = 3 then
if not IsCoprocessorEnabled(0) then

SignalException (CoprocessorUnusableException,

endif
GPR [rd] <« MSASave
elseif cs = 4 then
if not IsCoprocessorEnabled(0) then

SignalException (CoprocessorUnusableException,

endif
GPR[rd] « MSAModify
elseif c¢s = 5 then
if not IsCoprocessorEnabled(0) then

SignalException (CoprocessorUnusableException,

endif
GPR [rd] <« MSARequest
elseif cs = 6 then
if not IsCoprocessorEnabled(0) then

SignalException (CoprocessorUnusableException,

endif
GPR[rd] <« MSAMap
elseif cs = 7 then
if not IsCoprocessorEnabled(0) then

SignalException (CoprocessorUnusableException,

endif
GPR [rd] <« MSAUnmap
else

0)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 123

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

GPR[rd] = 0
endif
else
GPR[rd] = 0
endif

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception. Coprocessor 0 Unusable Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 124

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Compare Signed Less Than or Equal CLE_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 100 of wt ws wd 001111
6 3 2 5 5 5 6

Format: CLE s.df

CLE_S.B wd,ws,wt
CLE S.H wd,ws,wt
CLE S.W wd,ws,wt
CLE S.D wd,ws,wt

Purpose: Vector Compare Signed Less Than or Equal

Vector to vector compare for signed less or equal; if true al destination bits are set, otherwise clear.

Description: wa[i] « (ws[i] <= wt[il)

MSA
MSA
MSA
MSA

Set al bitsto 1 inwd elements if the corresponding ws elements are signed less than or equal to wt elements, other-

wise set dl bitsto 0.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLE_S.B
for i in 0 .. WRLEN/8-1
C ¢ WRIwslgj,7 gi <= WRIwtlgi,7 i
WR[wdlgi,y, gi < C
endfor

CLE_S.H
for i in 0 .. WRLEN/16-1
€ « WRIwWS]igi,15. 161 <= WRIWEI 165,15, 161
WR[wd] 161415..161 < C
endfor

CLE_S.W
for i in 0 .. WRLEN/32-1
€ « WRIWSl3pi,31. 321 <= WRIWEI353,31. 321
WR [wdl 351431..321 ¢ C
endfor

CLE_S.D
for i in 0 .. WRLEN/64-1
€ < WRIwWSlggire3. 641 <= WRIWEIgai,63. 6ai
WR [wd] 641463, 621 < C°*
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

125

Vector Compare Unsigned Less Than or Equal

CLE_U.df

31 26 25 23 22 21 20 11 10
MSA 3R
011110 101 | df wt ws wd 001111
6 3 2 5 5 5 6
Format: CLE U.df
CLE U.B wd,ws,wt
CLE U.H wd,ws,wt
CLE U.W wd,ws,wt
CLE U.D wd,ws,wt

Purpose: Vector Compare Unsigned Less Than or Equal

Vector to vector compare for unsigned less or equal; if true all destination bits are set, otherwise clear.

Description: wa[i] « (ws[i] <= wt[il)

MSA
MSA
MSA
MSA

Set all bitsto 1 in wd elementsif the corresponding ws elements are unsigned less than or equal to wt elements, other-

wise set all bitsto 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
CLE U.B
for i in 0 .. WRLEN/8-1
c « (0 || WRIwSIgj,7. g3) <= (0 || WRIwtlgi,s gi)
WR[wdlgj,7, gi < C
endfor
CLE U.H
for i in 0 .. WRLEN/16-1
c « (0 || WRIWSI1gi415. .161) <= (0 || WRIWE]165415. 161)
WR[wd] 161415..161 < C
endfor
CLE U.W
for i in 0 .. WRLEN/32-1
c « (0 || WRIws]__32i+31..321) <= (0 || WRIwtlsni,31. 321)
WR [wdl351431..321 ¢ C
endfor
CLE U.D
for i in 0 .. WRLEN/64-1
c « (0 || WRIWSIgaise3. 6ai) <= (0 || WRIWE]gai.63. 6a1)
WR[wdlgsi463..641 < C
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

126

Immediate Compare Signed Less Than or Equal

CLEI_S.df

31 26 25 23 22 21 20
MSA I5
011110 100 of 5 ws wd 000111
6 3 2 5 5 6

Format: CLEI s.df
CLEI_S.B wd,ws,s5
CLEI S.H wd,ws,s5

CLEI S.W wd,ws,s5

CLEI S.D wd,ws,s5

Purpose: Immediate Compare Signed Less Than or Equal

Immediate to vector compare for signed less or equal; if true all destination bits are set, otherwise clear.

Description: wd[i] <« (ws[i] <= s5)

MSA
MSA
MSA
MSA

Set dl bitsto 1 inwd elements if the corresponding ws element is less than or equal to the 5-hit signed immediate s5,

otherwise set all hitsto 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
CLEI_S.B
t « (s54)% || s5, o
for i in 0 .. WRLEN/8-1
C ¢« WR[wWSlgj,7, gi <=t
WR [wd]gs 7, g5 ¢ c®
endfor
CLEI_S.H
t « (85 || s5,
for i in 0 .. WRLEN/16-1
¢ « WRI[wS]i6i,15. 161 <=
WR [wd] 161415..161 ¢ ©
endfor
CLEI_S.W
£« (s54)% || 854 ¢
for i in 0 .. WRLEN/32-1
¢ « WR[wsljpi,31, 321 <= €
WR[wd] 351431..321 ¢ C
endfor
CLEI_S.D
t « (85,)°° || s5_4.. 0__
for i in 0 .. WRLEN/64-1
¢ « WR[wslggir63. 641 <= €
64
WR [wdlga1463..641 ¢ C
endfor

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

127

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 128

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Compare Unsigned Less Than or Equal CLEI_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA I5
011110 101 of us ws wd 000111
6 3 2 5 5 5 6

Format: CLEI U.df

CLEI_U.B wd,ws,u5 MSA
CLEI U.H wd,ws,u5 MSA
CLEI U.W wd,ws,u5 MSA
CLEI_U.D wd,ws,u5 MSA

Purpose: Immediate Compare Unsigned Less Than or Equal

Immediate to vector compare for unsigned less or equal; if true all destination bits are set, otherwise clear.

Description: wd[i] <« (ws[i] <= u5)

Set al bitsto 1 inwd elements if the corresponding ws element is unsigned less than or equal to the 5-bit unsigned
immediate u5, otherwise set all bitsto 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLEI_U.B
t « 0% || us, o
for i in 0 .. WRLEN/8-1
c < (0 [| WRIwslgj,7 g3) <= (0 [] t)
WR [wd]gs 7, g5 ¢ c°
endfor

CLEI_U.H
t « || uss o
for i in 0 .. WRLEN/16-1
c « (0 || WRIwWS]qigi415..161) <= (0O || t)
WR [wdl 161415..161 ¢ ©
endfor

011

CLEI_U.W
£« || u54. 0
for i in 0 .. WRLEN/32-1
C « WRIwS]3pi,31. 325 <= (0 || t)
WR[wd] 351431..321 ¢ C
endfor

027

CLEI_U.D
t <« || u54. .0
for i in 0 .. WRLEN/64-1
C « WRIwSlggii63.. 625 <= (0 [[)
WR [wd] gai463. 621 < C°°
endfor

059

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 129

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 130

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Compare Signed Less Than CLT_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 010 of wt ws wd 001111
6 3 2 5 5 5 6

Format: cCLT s.df

CLT S.B wd,ws,wt MSA
CLT S.H wd,ws,wt MSA
CLT S.W wd,ws,wt MSA
CLT S.D wd,ws,wt MSA

Purpose: Vector Compare Signed Less Than

Vector to vector compare for signed less than; if true all destination bits are set, otherwise clear.

Description: wd [1] « (ws[i] < wt[i])

Set all bitsto 1 inwd elements if the corresponding ws elements are signed less than wt elements, otherwise set all
bitsto 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

CLT S.B
for i in 0 .. WRLEN/8-1
C ¢ WR[wslgij,7 gi < WRI[Wtlgi, 7 g3
WR[wdlgi,y, gi < C
endfor

CLT S.H
for i in 0 .. WRLEN/16-1
¢ « WRIwWS]igi,15. 161 < WRIWEI 165,15, 161
WR[wd] 161415..161 < C
endfor

CLT S.W
for i in 0 .. WRLEN/32-1
¢ « WRIwSl3pi,31. .32 < WRIWEI 355,31, 321
WR [wdl 351431..321 ¢ C
endfor

CLT S.D
for i in 0 .. WRLEN/64-1
¢ < WRIwWSlggire3. 641 < WRIWEIgai,63. 641
WR [wd] 641463, 621 < C°*
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 131

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Compare Unsigned Less Than CLT_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 o1l of wt ws wd 001111
6 3 2 5 5 5 6

Format: cLT U.df
CLT U.B wd,ws,wt
CLT U.H wd,ws,wt
CLT U.W wd,ws,wt
CLT U.D wd,ws,wt

Purpose: Vector Compare Unsigned Less Than

Vector to vector compare for unsigned less than; if true all destination bits are set, otherwise clear.

Description: wd [1] « (ws[i] < wt[i])

MSA
MSA
MSA
MSA

Set dl bitsto 1 in wd elements if the corresponding ws elements are unsigned less than wt elements, otherwise set all

bitsto 0.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
CLT U.B
for i in 0 .. WRLEN/8-1
c « (0 || WRIwsSIgj,7. g3) < (O || WRIWElgi,s gi)
WR[wdlgj,7, gi < C
endfor
CLT U.H
for i in 0 .. WRLEN/16-1
c « (0 || WRIWSI16i415. .161) < (0 || WRIWE] g5 15, 164)
WR[wd] 161415..161 < C
endfor
CLT U.W
for i in 0 .. WRLEN/32-1
c « (0 || WRIws]__32i+31..321) < (0 || WRIwtlsni,31. 321)
WR [Wd] 355431, 321 ¢ €7
endfor
CLT U.D
for i in 0 .. WRLEN/64-1
c « (0 || WRIWSIgaisg3..6ai) < (0 || WRIWE]gui163. 6ai)
WR [wd] 641463, 621 < C°*
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

132

Immediate Compare Signed Less Than CLTI_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA I5
011110 010 of 5 ws wd 000111
6 3 2 5 5 5 6

Format: cLTI s.df

CLTI_S.B wd,ws,s5
CLTI S.H wd,ws,s5
CLTI S.W wd,ws,s5
CLTI_S.D wd,ws,s5

Purpose: Immediate Compare Signed Less Than

Immediate to vector compare for signed less than; if true all destination bits are set, otherwise clear.

Description: wd[i] « (ws[i] < s5)

MSA
MSA
MSA
MSA

Set all bitsto 1 in wd elements if the corresponding ws element is less than the 5-bit signed immediate s5, otherwise

set all bitsto 0.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
CLTI_S.B
t « (s54)% || s5, o
for i in 0 .. WRLEN/8-1
C < WR[WS]8i+7..8i < t
WR [wd]gs 7, g5 ¢ c®
endfor
CLTI_S.H
t « (85 || s5,
for i in 0 .. WRLEN/16-1
Cc < WRI[wS]igi415. 161 < €
WR [wd] 161415..161 ¢ ©
endfor
CLTI_S.W
£« (s54)% || 854 ¢
for i in 0 .. WRLEN/32-1
¢ « WR[wS]3pi,37. .32 < t
WR[wd] 351431..321 ¢ C
endfor
CLTI_S.D
t « (85,)°° || s5_4.. 0__
for i in 0 .. WRLEN/64-1
¢ « WR[wSlgsiie3. 641 < t
64
WR [wdlga1463..641 ¢ C
endfor

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

133

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 134

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Compare Unsigned Less Than

CLTI_U.df

31 26 25 23 22 21 20 16 15 11 10
MSA I5
011110 o1l of us ws wd 000111
6 3 2 5 5 5 6

Format: cLTI U.df
CLTI_U.B wd,ws,ub
CLTI U.H wd,ws,ub
CLTI U.W wd,ws,ub
CLTI _U.D wd,ws,ub

Purpose: Immediate Compare Unsigned Less Than

Immediate to vector compare for unsigned less than; if true all destination bits are set, otherwise clear.

Description: wd[i] <« (ws[i] < u5)

MSA
MSA
MSA
MSA

Set all hitsto 1in wd elementsif the corresponding ws element is unsigned less than the 5-bit unsigned immediate u5,

otherwise set all hits

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

to 0.

Operation:
CLTI U.B
t « 0% || us, o
for i in 0 .. WRLEN/8-1
c « (0 || WRIwslgj,y. g5) < (O |] €)
WRIwdlgi,7. g1 < c®
endfor
CLTI U.H
t « 0 || us, ,
for i in 0 .. WRLEN/16-1
c « (0 || WRIwS]i6i415..161) < (O || t)
WR[wd] 165415, 161 ¢ C
endfor
CLTI U.W
£« 0% || us, o
for i in 0 .. WRLEN/32-1

¢ « WR[wsl;pi,31. 321 <

WR[wd] 351431..321 ¢ C

endfor
CLTI_U.D
t «
for i in

059

¢ « WR[wslgaire3. 621 <
64
WR [wdlga1463..641 ¢ C

endfor

|| ubs. o
0 .. WRLEN/64-1

(0

(0

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

135

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 136

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Element Copy to GPR Signed COPY_S.df
31 26 25 22 21 16 15 11 10
MSA ELM
011110 0010 df/n ws rd 011001
6 4 6 5 5 6

Format: copy s.df
COPY_S.B rd,ws[n]
COPY _S.H rd,ws[n]
COPY S.W rd,ws[n]

Purpose: Element Copy to GPR Signed
Element value sign extended and copied to GPR.

Description: rd « signed(ws[n])

Sign-extend element n of vector ws and copy the result to GPR rd.

Restrictions:

No data-dependent exceptions are possible.

Operation:
COPY S.B
GPR[rd] <« sign extend(WRI[wslg,,7 gn, 32)

COPY S.H
GPR[rd] <« sign_extend (WR([wslign,15. 16ns 32)

COPY S.W
GPR[rd] <« WRI[wslisni31. .32n

function sign_extend(tt, n)
return (tt, ;) CPREEN-T || pp o
endfunction sign_extend

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSA
MSA
MSA

137

Element Copy to GPR Unsigned COPY_U.df

31 26 25 22 21 16 15 11 10 6 5 0
MSA ELM
011110 0011 df/n ws rd 011001

6 4 6 5 5 6

Format: copy U.df
COPY U.B rd,ws [n] MSA
COPY U.H rd,ws[n] MSA

Purpose: Element Copy to GPR Unsigned
Element value zero extended and copied to GPR.

Description: rd « unsigned (ws[n])

Zero-extend element n of vector ws and copy the result to GPR rd.

Restrictions:

No data-dependent exceptions are possible.

Operation:
COPY_U.B
GPR[rd] < zero_extend (WRI[wslgn,7 .gn:, 32))

COPY U.H
GPR [rd] <« zero_extend(WR[ws]ligni15. . 16ns 32))

function zero extend(tt, n)
return QCFREEN-D || ¢
endfunction zero extend

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 138

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

GPR Copy to MSA Control Register CTCMSA

31 26 25 16 15 11 10 6 5 0
MSA ELM
011110 0000111110 rs cd 011001
6 10 5 5 6

Format: cTcMsa

CTCMSA cd, rs MSA
Purpose: GPR Copy to MSA Control Register
GPR value copied to MSA control register.

Description: cd « rs
The content of GPR rs is copied to MSA control register cd.

Writing to the MSA Control and Status Register MSACSR causes the appropriate exception if any Cause bit and its
corresponding Enable bit are both set. The register is written before the exception occurs and the EPC register con-
tains the address of the CTCM SA instruction.

Restrictions:

The write attempt is IGNORED if cd specifies areserved register or aregister that does not exist or is not writable.

Operation:

if ¢d = 1 then
MSACSR <« GPR|[rs]

if MSACSReauge @nd (1 || MSACSRgnaiples) # 0 then
SignalException (MSAFloatingPointException)
endif

elseif MSAIRyzp = 1 then
if cd = 3 then
if not IsCoprocessorEnabled(0) then
SignalException (CoprocessorUnusableException, 0)
endif
MSASave <« GPR[rs]
elseif cd = 4 then
if not IsCoprocessorEnabled(0) then
SignalException (CoprocessorUnusableException, 0)
endif
MSAModify <« GPR[rs]
elseif cd = 6 then
if not IsCoprocessorEnabled(0) then
SignalException (CoprocessorUnusableException, 0)
endif
MSAMap <« GPR[rs]
elseif cd = 7 then
if not IsCoprocessorEnabled(0) then
SignalException (CoprocessorUnusableException, 0)
endif
MSAUnmap <« GPR[rs]
endif
endif

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception. Coprocessor 0 Unusable

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 139

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 140

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Divide DIV_S.df
31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 100 | df wt ws wd 010010
6 3 2 5 5 5 6
Format: DIV s.df
DIV_S.B wd,ws,wt MSA
DIV_S.H wd,ws,wt MSA
DIV_S.W wd,ws,wt MSA
DIV_S.D wd,ws,wt MSA

Purpose: Vector Signed Divide
Vector signed divide.

Description: wd [1i] « ws[i] div wt[i]

The signed integer elements in vector ws are divided by signed integer elements in vector wt. The result is written to

vector wd. If adivisor element vector wt is zero, the result valueis UNPREDICTABLE.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
DIV S.B
for i in 0 .. WRLEN/8-1
WR([wdlgi,7 gi < WRIwslgj,7 gi div WRIwtlgi,7 g
endfor
DIV S.H
for i in 0 .. WRLEN/16-1
WR WAl 161415..161 ¢ WRIWS]igi,15. 161 iV WRIWE] 145,15, 161
endfor
DIV S.W
for i in 0 .. WRLEN/32-1
WR[wd] 355431, 321 ¢ WRIwWSl355,31. 325 div WRIwtl3ni,31. 321
endfor
DIV S.D
for i in 0 .. WRLEN/64-1
WR[Wdlgsi463. 641 ¢ WRIWSlggi,63. 641 A1V WRIWElg45.63. 641
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

141

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Divide

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 101 of wt ws wd 010010
6 3 2 5 5 5 6

Format: DIV U.df
DIV _U.B wd,ws,wt
DIV U.H wd,ws,wt
DIV U.W wd,ws,wt
DIV _U.D wd,ws,wt

Purpose: Vector Unsigned Divide

Vector unsigned divide.

Description: wd[i] « ws[i] udiv wt[i]

DIV_U.df

MSA
MSA
MSA
MSA

The unsigned integer elements in vector ws are divided by unsigned integer elements in vector wt. The result is writ-
ten to vector wd. If adivisor element vector wt is zero, the result value is UNPREDICTABLE.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DIV U.B

for i in 0 .. WRLEN/8-1

WR[wdlgi,7, gi < WRIWSlgi,q g udiv WRIwtlgj,; g1

endfor
DIV U.H
for 1 in 0 . WRLEN/16-1
WR[wdl 161415..161 ¢ WRIWS] 164,15
endfor
DIV U.W
for 1 in 0 . WRLEN/32-1
WR [wd] 355,31, .321 ¢ WRIwsl3pi,37.
endfor
DIV U.D
for 1 in 0 . WRLEN/64-1
WR (WAl g4i463..621 ¢ WRIWS]gai,63
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

..16i

.321

..641

udiv WR[wt] 16i+15

udiv WRI[wtlssi,31.

udiv WRI[wt]gsi,63.

..16i

.321

.641

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

142

Vector Signed Dot Product DOTP_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 000 of wt ws wd 010011
6 3 2 5 5 5 6

Format: DOTP_S.df

DOTP_S.H wd,ws,wt MSA
DOTP_S.W wd,ws,wt MSA
DOTP_S.D wd,ws,wt MSA

Purpose: Vector Signed Dot Product

Vector signed dot product (multiply and then pairwise add the adjacent multiplication results) to double width ele-
ments.

Description: (wd[21+1], wd[2i]) <« signed(ws[2i+1]) * signed (wt[2i+1]) + signed(ws[2i]) *
signed (wt [21])

The signed integer elements in vector wt are multiplied by signed integer elements in vector ws producing a result
twice the size of the input operands. The multiplication results of adjacent odd/even elements are added and stored to
the destination.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
DOTP_S.H
for i in 0 .. WRLEN/16-1
WR [wd] 161415, 161 < dotp_s(WRIwS]igi,15. 161, WRIWEI 165,15 161+ 8)
endfor
DOTP_S.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ dotp_s(WRIwS]35i,31. 321, WRIWEI35i,31. 321, 16)
endfor
DOTP_S.D
for i in 0 .. WRLEN/64-1
WR[wd] 641463, 641 ¢ dotp_s(WRI[wSlgsi,63. 621, WRIWEIgaii63. 621, 32)
endfor

function mulx s(ts, tt, n)
S <« (tsn—l)n || t:Sn—l..O
£« (ttn—l)n || ttn—l..O
p < s *t
return pon_1. .9

endfunction mulx s

function dotp s(ts, tt, n)
pl <~ mulx_s(ts2n—1..n' tt2n—1..nl n)
PO « mulx s(ts,.1 o, tth1. .o, 1)
p < pl + po
return poh.1. .9

endfunction dotp_s

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 143

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 144

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Dot Product DOTP_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 001 of wt ws wd 010011
6 3 2 5 5 5 6

Format: DpoTP U.df

DOTP_U.H wd,ws,wt MSA
DOTP_U.W wd,ws,wt MSA
DOTP_U.D wd,ws,wt MSA

Purpose: Vector Unsigned Dot Product

Vector unsigned dot product (multiply and then pairwise add the adjacent multiplication results) to double width ele-
ments.

Description: (wd[2i+1], wd[2i]) <« unsigned(ws[2i+1]) * unsigned (wt[2i+1]) +
unsigned(ws[2i]) * unsigned (wt[2i])

The unsigned integer elements in vector wt are multiplied by unsigned integer elements in vector ws producing a
result twice the size of the input operands. The multiplication results of adjacent odd/even elements are added and
stored to the destination.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
DOTP_U.H
for i in 0 .. WRLEN/16-1
WR [wd] 161415, 161 < dotp_u(WRI[wS]igi,15. 161, WRIWEI 165,15 161+ 8)
endfor
DOTP_U.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ dotp_u(WRIwS]3zi,31. 321, WRIWEI35i,31. 321, 16)
endfor
DOTP_U.D
for i in 0 .. WRLEN/64-1
WR[wd] 641463, 641 ¢ dotp_u(WRI[wSlgsi,63. 621, WRIWEIgai,63. 621, 32)
endfor

function mulx u(ts, tt, n)
s « 0" || tspq. g
t <« 0" || tty.q o
p < s *t
return pon_1. .9
endfunction mulx s

function dotp u(ts, tt, n)
pl <~ mulx_u(ts2n—1..n' tt2n—1..nl n)
PO « mulx u(ts,.; o, tth.1. .o, 1)
p < pl + po
return poh.1. .9

endfunction dotp u

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 145

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 146

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Dot Product and Add DPADD_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 010 of wt ws wd 010011
6 3 2 5 5 5 6

Format: DPADD S.df

DPADD_S.H wd,ws,wt MSA
DPADD S.W wd,ws,wt MSA
DPADD S.D wd,ws,wt MSA

Purpose: Vector Signed Dot Product and Add

Vector signed dot product (multiply and then pairwise add the adjacent multiplication results) and add to double
width elements.

Description: (wd[2i+1], wd[2i]) « (wd[2i+1], wd[2i]) + signed(ws[2i+1]) *

signed(wt [21i+1]) + signed(ws[2i]) * signed(wt[21])

The signed integer elements in vector wt are multiplied by signed integer elements in vector ws producing a result
twice the size of the input operands. The multiplication results of adjacent odd/even elements are added to the integer
elementsin vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
DPADD S.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415, 161 ¢
WR([wd] 161415..161 + dOtp_s (WRIWS] 65,15 161+ WRIWE]l 165,15, 161/ 8)
endfor
DPADD S.W
for i in 0 .. WRLEN/32-1
WR [wdl 351431, .321 ¢
WR [wd] 351431..321 + dotp_s (WRIwWSI3pi 31 32i, WRIWED3pi,31. 321, 16)
endfor
DPADD S.D
for i in 0 .. WRLEN/64-1
WR [wdlgai463..621 €
WR[wdlggi463..641 + AOtP_S(WRIWSIgaii63. . 6air WRIWE]g4i,63. 641/ 32)
endfor

function mulx s(ts, tt, n)
s « (tsp)™ || tspq o
£« (ttn)™ || ttaq o
p < s *t
return pyn_1. .0

endfunction mulx s

function dotp s(ts, tt, n)
Pl « mulx s(tsyy. 1. .nr Etop.1. .ns 1)
PO « mulx s(ts,_ 1. o, tth1. .0, 1)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 147

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

p < pl + pO
return Dop-1. .0
endfunction dotp_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 148

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Dot Product and Add DPADD_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 o1l of wt ws wd 010011
6 3 2 5 5 5 6

Format: DpADD U.d4f

DPADD U.H wd,ws,wt MSA
DPADD U.W wd,ws,wt MSA
DPADD U.D wd,ws,wt MSA

Purpose: Vector Unsigned Dot Product and Add

Vector unsigned dot product (multiply and then pairwise add the adjacent multiplication results) and add to double
width results.

Description: (wd[2i+1], wd[2i]) <« (wd[2i+1], wd[2i]) + unsigned(ws[2i+1]) *

unsigned (wt [2i+1]) + unsigned(ws([21]) * unsigned(wt[21])

The unsigned integer elements in vector wt are multiplied by unsigned integer elements in vector ws producing a
result twice the size of the input operands. The multiplication results of adjacent odd/even elements are added to the
integer elementsin vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
DPADD U.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415, 161 ¢
WR([wd] 161415, .161 + AOtP_U(WR[WS] 165,15 165+ WRIWE]l 165,15, 161/ 8)
endfor
DPADD U.W
for i in 0 .. WRLEN/32-1
WR [wdl 351431, .321 ¢
WR [wd] 351431..321 + dotp_u(WRIwWSI3pii31. 32i, WRIWEDl3pi,31. 321, 16)
endfor
DPADD U.D
for i in 0 .. WRLEN/64-1
WR [wdlgai463..621 €
WR[wdlggi463..641 + AOtP_U(WRIWSIgaii63. . 6air WRIWE]g4i,63. 641/ 32)
endfor

function mulx u(ts, tt, n)
s « 0" || tsp1. o
t « 0" || ttp.1. o
p < s *t
return pyn_1. .0
endfunction mulx s

function dotp u(ts, tt, n)
Pl « mulx u(tsyy . .pnr Etopo1. .n, 1)
PO « mulx u(ts,_ 1 o, tth1. .o, 1)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 149

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

p < pl + pO
return Dop-1. .0
endfunction dotp_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 150

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Dot Product and Subtract DPSUB_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 100 of wt ws wd 010011
6 3 2 5 5 5 6

Format: DPSUB_sS.df

DPSUB_S.H wd,ws,wt MSA
DPSUB_S.W wd,ws,wt MSA
DPSUB_S.D wd,ws,wt MSA

Purpose: Vector Signed Dot Product and Subtract

Vector signed dot product (multiply and then pairwise add the adjacent multiplication results) and subtract from dou-
ble width elements.

Description: (wd[2i+1], wd[2i]) <« (wd[2i+1], wd[2i]) - (signed(ws[2i+1]) *

signed(wt [21i+1]) + signed(ws[2i]) * signed(wt[21]))

The signed integer elements in vector wt are multiplied by signed integer elements in vector ws producing a signed
result twice the size of the input operands. The sum of multiplication results of adjacent odd/even elements is sub-
tracted from the integer elementsin vector wd to a signed result.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
DPSUB_S.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415, 161 ¢
WR([wd] 161415..161 - dotp_s (WRIwWS] 65,15 165+ WRIWE]l 165,15, 161/ 8)
endfor
DPSUB_S.W
for i in 0 .. WRLEN/32-1
WR [wdl 351431, .321 ¢
WR [wdl 351431..321 - dotp_s(WRIwWSI3pi 31 .32i, WRIWEDl3pi,31. 321, 16)
endfor
DPSUB_S.D
for i in 0 .. WRLEN/64-1
WR [wdlgai463..621 €
WR[wdlggi463..641 - AOtp_s (WRIWSIgaii63. . 6air WRIWE]g4i,63. 641/ 32)
endfor

function mulx s(ts, tt, n)
s « (tsp)™ || tspq o
£« (ttn)™ || ttaq o
p < s *t
return pyn_1. .0

endfunction mulx s

function dotp s(ts, tt, n)
Pl « mulx s(tsyy. 1. .nr Etop.1. .ns 1)
PO « mulx s(ts,_ 1. o, tth1. .0, 1)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 151

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

p < pl + pO
return Dop-1. .0
endfunction dotp_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 152

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Dot Product and Subtract DPSUB_U.df
31 26 25 23 22 21 20 16 15 11 10 0
MSA 3R
011110 01| df wt ws wd 010011
6 3 2 5 5 5 6
Format: DpPSUB U.df
DPSUB_U.H wd,ws,wt MSA
DPSUB U.W wd,ws,wt MSA
DPSUB U.D wd,ws,wt MSA

Purpose: Vector Unsigned Dot Product and Subtract
Vector unsigned dot product (multiply and then pairwise add the adjacent multiplication results) and subtract from

double width elements.

Description: (wd[2i+1], wd[2i]) « (wd[2i+1], wd[2i]) - (unsigned(ws[2i+1]) *

unsigned (wt [2i+1]) + unsigned(ws[21])

* unsigned(wt [21i]))

The unsigned integer elementsin vector wt are multiplied by unsigned integer elementsin vector ws producing a pos-
itive, unsigned result twice the size of the input operands. The sum of multiplication results of adjacent odd/even ele-

ments is subtracted from the integer elementsin vector wd to asigned result.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

DPSUB _U.H
for 1 in 0 . WRLEN/16-1
WR[wdl 161415, 161 ¢

WR([wd] 161415, .161 - dOtp_U(WR[wWS]16i,15. 161+ WRIWE]l 165,15, 161/ 8)

endfor

DPSUB U.W
for 1 in 0 . WRLEN/32-1
WR [wdl 351431, .321 ¢

WR [wdl 351431..321 - dotp_u(WRIwWSIspi 31 .32i, WRIWEl3pi,31. 321, 16)

endfor

DPSUB_U.D
for 1 in 0 . WRLEN/64-1
WR [wdlgai463..621 €

WR[wdlggi463..641 - AOtP_U(WRIWSIgaii63. . 6air WRIWE]g4i,63. 641/ 32)

endfor

function mulx u(ts, tt, n)
s « 0" || tsp1. o
t « 0" || ttp.1. o
p < s *t
return pyn_1. .0
endfunction mulx s

function dotp u(ts, tt, n)

pl « mulx u(ts,,.q n, tton.1. n, 1)
p0 « mulx u(ts,_ i o, ttp_1. .9, 1N)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

153

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

p < pl + pO
return Dop-1. .0
endfunction dotp_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 154

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Addition

FADD.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0000 | df wt ws wd 011011
6 4 1 5 5 5 6
Format: FADD.df

FADD.W wd,ws,wt
FADD.D wd,ws,wt

Purpose: Vector Floating-Point Addition
Vector floating-point addition.

Description: wd [i] « ws[i] + wt[i]

MSA
MSA

The floating-point elementsin vector wt are added to the floating-point elements in vector ws. The result iswritten to

vector wd.

The add operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FADD.W
for i in 0 .. WRLEN/32-1
WR [wd] 355,31, .321 ¢ AAAFP (WRIwsSl35i,31. 321, WRIWE]355.31. 325, 32)
endfor
FADD.D
for i in 0 .. WRLEN/64-1

WR [wAl 643163, 641 ¢ AAAFP (WR[wWS] 45,63

endfor

function AddFP(tt, ts, n)
/* Implementation defined add operation. */
endfunction AJddFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

..6air WRIWtIgaii63. 6air 64)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 155

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Always False FCAF.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0000 | df wt ws wd 011010
6 4 1 5 5 5 6

Format: rcar.df
FCAF.W wd,ws,wt MSA
FCAF.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Always False

Vector to vector floating-point quiet compare always false; al destination bits are clear.

Description: wd[i] « quietFalse(ws[i], wt[i])
Set dl bitsto 0 in wd elements. Signaling NaN elementsin ws or wt signal Invalid Operation exception.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCAF.W
for 1 in 0 .. WRLEN/32-1
WR[wdl3zi,31. 321 ¢ QUietFALSE (WRIwS]3pi,31. 321, WRIWEl3i,37 325, 32)
endfor
FCAF.D
for 1 in 0 .. WRLEN/64-1
WR (WAl ggis63. 641 ¢ QUietFALSE (WRIwS]lgsi.63. 621+ WRIWElgai,63. 621/ 64)
endfor

function QuietFALSE (tt, ts, n)
/* Implementation defined signaling NaN test */
return 0
endfunction QuietFALSE
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 156

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Equal FCEQ.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0010 | df wt ws wd 011010
6 4 1 5 5 5 6

Format: FrCEQ.df
FCEQ.W wd,ws,wt MSA
FCEQ.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Equal

Vector to vector floating-point quiet compare for equality; if true al destination bits are set, otherwise clear.

Description: wd[i] « (ws[i] =(quiet) wt[i])

Set al bitsto 1 inwd elements if the corresponding ws and wt floating-point elements are ordered and equal, other-
wise set all bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCEQ.W
for i in 0 .. WRLEN/32-1
¢ < EqualFP(WRIwsl3ji,31. .32i/ WRIWEl355,31. 324, 32)
32
WR [wdl 351431..321 ¢ C
endfor
FCEQ.D
for i in 0 .. WRLEN/64-1

¢ < EqualFP(WRI[wslggi,63. 6air WRIWElg4i,63. 641, 64)
WR[wdlgai463..641 < C
endfor

function EqualFP(tt, ts, n)
/* Implementation defined quiet equal compare operation. */
endfunction EqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 157

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Class Mask FCLASS.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110010000 df ws wd 011110

6 9 1 5 5 6

Format: rcLASS.df
FCLASS.W wd,ws MSA
FCLASS.D wd,ws MSA
Purpose: Vector Floating-Point Class Mask
Vector floating-point class shown as a bit mask for Zero, Negative, Infinite, Subnormal, Quiet NaN, or Signaling
NaN.
Description: wd[i] « class(ws[i])

Store in each element of vector wd a bit mask reflecting the floating-point class of the corresponding element of
Vector ws.

The mask has 10 bits as follows. Bits 0 and 1 indicate NaN values: signaling NaN (bit 0) and quiet NaN (bit 1). Bits
2, 3, 4, 5 classify negative values: infinity (bit 2), normal (bit 3), subnormal (bit 4), and zero (bit 5). Bits 6, 7, 8, 9
classify positive values:infinity (bit 6), normal (bit 7), subnormal (bit 8), and zero (bit 9).

The input values and generated bit masks are not affected by the flush-to-zero bit FS in MSA Control and Status
Register MSACSR.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
FCLASS.W
for i in 0 .. WRLEN/32-1
¢ ¢« ClassFP(WRI[wSl3yi,31..32is 32)
WR WAl 355,31, 321 < 0%% || co. o
endfor
FCLASS.D
for i in 0 .. WRLEN/64-1
¢ ¢« ClassFP(WRI[wSl¢sii63. 6ais 64)
WR [wd] 621463, 621 < 0°% || co. 0
endfor

function ClassFP(tt, n)
/* Implementation defined class operation. */
endfunction ClassFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 158

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Less or Equal FCLE.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0110 | df wt ws wd 011010
6 4 1 5 5 5 6

Format: FrCLE.df
FCLE.W wd,ws,wt MSA
FCLE.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Less or Equal

Vector to vector floating-point quiet compare for less than or equal; if true all destination bits are set, otherwise clear.

Description: wa [i] « (ws[i] <=(quiet) wt[i])

Set dl bitsto 1 inwd elements if the corresponding ws floating-point elements are ordered and either less than or
equal to wt floating-point elements, otherwise set all bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCLE.W
for 1 in 0 .. WRLEN/32-1
C ¢ LessFP(WR[wWSl3pi,31. 324, WRIWEl32i,31. 321, 32)
d « EqualFP(WR [WS]32i+31”32i, WR[Wt]32i+3l..32i’ 32)
WR [wdl 321,31, .32 ¢ (¢ | d)32
endfor
FCLE.D
for i in 0 .. WRLEN/64-1

¢ <« LessFP(WRI[wSlgsires. air WRIWElgai,63 gair 64)
d < EqualFP(WRI[wSlgsiie3. . 6ais WRIWElgaire3. 6air 64)
WR WAl gai463. 621 < (c | d)°*

endfor

function LessThanFP(tt, ts, n)
/* Implementation defined quiet less than compare operation. */
endfunction LessThanFP

function EqualFP(tt, ts, n)
/* Implementation defined quiet equal compare operation. */
endfunction EqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 159

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Less Than FCLT.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0100 | df wt ws wd 011010
6 4 1 5 5 5 6

Format: rcLT.df
FCLT.W wd,ws,wt MSA
FCLT.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Less Than

Vector to vector floating-point quiet compare for less than; if true all destination bits are set, otherwise clear.

Description: wa[i] « (ws[i] <(quiet) wt[i])

Set all bitsto 1 inwd elements if the corresponding ws floating-point elements are ordered and less than wt floating-
point elements, otherwise set al bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCLT.W
for i in 0 .. WRLEN/32-1
c < LessFP(WRI[wslisi,31. .32i+ WRIWE]35i,31. 325, 32)
32
WR [wdl 351431..321 ¢ C
endfor
FCLT.D
for i in 0 .. WRLEN/64-1

C ¢ LessFP(WR[wWSlggi,63. 6air WRIWElgaise3. 6a1s 64)
WR [wdlgqi463. 641 < C
endfor

function LessThanFP(tt, ts, n)
/* Implementation defined quiet less than compare operation. */
endfunction LessThanFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 160

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Not Equal FCNE.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0011 | df wt ws wd 011100
6 4 1 5 5 5 6

Format: FCNE.df
FCNE.W wd,ws,wt MSA
FCNE.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Not Equal

Vector to vector floating-point quiet compare for not equal; if true all destination bits are set, otherwise clear.

Description: wd[i] « (ws[i] #(quiet) wt[i])

Set dl bitsto 1 inwd elementsif the corresponding ws and wt floating-point elements are ordered and not equal, oth-
erwise set all bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCNE.W
for i in 0 .. WRLEN/32-1
c < NotEqualFP (WR[wS]j35i,31. .32is WRIWtlszoi,31. 321, 32)
WR [wd] 355,31, 325 ¢ 7
endfor
FCNE.D
for i in 0 .. WRLEN/64-1

¢ « NotEqualFP(WRI[wS]lgsii63. 6a1s WRIWtlgaises. gair 64)
WR WAl g41463. 641 ¢ C
endfor

function NotEqualFP (tt, ts, n)
/* Implementation defined quiet not equal compare operation. */
endfunction NotEqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 161

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Ordered FCOR.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0001 | df wt ws wd 011100
6 4 1 5 5 5 6

Format: FCOR.df
FCOR.W wd,ws,wt MSA
FCOR.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Ordered

Vector to vector floating-point quiet compare ordered; if true all destination bits are set, otherwise clear.

Description: wa[i] « ws[i] !?(quiet) wt[i]

Set all bitsto 1 inwd elementsiif the corresponding ws and wt floating-point elements are ordered, i.e. both elements
are not NaN values, otherwise set al bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCOR.W
for i in 0 .. WRLEN/32-1
c «OrderedFP (WR([wWs]35i,31. .32i+ WRIWE]35i,31. 32i+ 32)
WR [wd] 355,31, 325 ¢ 7
endfor
FCOR.D
for i in 0 .. WRLEN/64-1

¢ < OrderedFP (WR[ws]lgsii63. 641+ WRIWE] ¢aii63. 6air 64)
WR[wdl6sis63. 641 < C
endfor

function OrderedFP(tt, ts, n)
/* Implementation defined quiet ordered compare operation. */
endfunction OrderedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 162

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Unordered or Equal FCUEQ.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0011 | df wt ws wd 011010
6 4 1 5 5 5 6

Format: FCUEQ.df
FCUEQ.W wd,ws,wt MSA
FCUEQ.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Unordered or Equal
Vector to vector floating-point quiet compare for unordered or equality; if true all destination bits are set, otherwise
clear.
Description: wd [i] « (ws[i] =? (quiet) wt[i])

Set all bitsto 1 in wd elements if the corresponding ws and wt floating-point elements are unordered or equal, other-
wise set all bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
1

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCUEQ.W
for i in 0 .. WRLEN/32-1
¢ <« UnorderedFP (WR[ws]35i,31. 321+ WRIWE]l355,31 325, 32)
d « EqualFP(WR [WS]32i+31”32i, WR[Wt]32i+3l..32i’ 32)
WR [wd] 355,31, 325 ¢ (¢ |)32
endfor
FCUEQ.D
for i in 0 .. WRLEN/64-1

¢ <« UnorderedFP (WRI[wWS]csiie3. 6air WRIWE] gaii63. cair 64)
d < EqualFP(WRI[wSlgsiie3. . 6ais WRIWElgaire3. 6air 64)
WR[Wd] 41463, 621 < (c | @)

endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */
endfunction UnorderedFP

function EqualFP(tt, ts, n)
/* Implementation defined quiet equal compare operation. */
endfunction EqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 163

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Unordered or Less or Equal FCULE.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 ou1 wt ws wd 011010
6 4 1 5 5 5 6

Format: FCULE.df
FCULE.W wd,ws,wt MSA
FCULE.D wd,ws,wt MSA

Purpose: Vector Floating-Point Quiet Compare Unordered or Less or Equal

Vector to vector floating-point quiet compare for unordered or less than or equal; if true all destination bits are s,
otherwise clear.

Description: wd[i] « (ws[i] <=? (quiet) wt[i])

Set al bitsto 1 inwd elements if the corresponding ws floating-point elements are unordered or less than or equal
to wt floating-point elements, otherwise set all bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
1

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-
2008.

Operation:

FCULE.W
for i in 0 .. WRLEN/32-1
¢ < UnorderedFP (WRI[ws]35i,31. 321+ WRIWtlssi,31. 32i, 32)
d <« LessFP(WRI[wSlisi,31. 325+ WRIWEIsni,31. 32is 32)
e < EqualFP(WRI[wsSlisi,31. 321, WRIWEl33i431. 325, 32)
WR[Wdl3p5,31. 320 ¢ (¢ | d | e)??
endfor

FCULE.D
for i in 0 .. WRLEN/64-1
C <« UnorderedFP (WRI[wslgsii63. .6ais WRIWE]lggi,63. 641, 64)
d « LessFP(WRIwSlgsire3. 621+ WRIWElgsii63. 621/ 64)
e « EqualFP (WR([wsS]lgsii63. .61/ WRIWElgai463. 641/ 64)
WR[wdl g4i,63..641 < (c | d [e)
endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */
endfunction UnorderedFP

function LessThanFP(tt, ts, n)
/* Implementation defined quiet less than compare operation. */
endfunction LessThanFP

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 164

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Unordered or Less or Equal FCULE.df

function EqualFP(tt, ts, n)
/* Implementation defined quiet equal compare operation. */
endfunction EqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 165

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Unordered or Less Than FCULT.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0101 | df wt ws wd 011010
6 4 1 5 5 5 6

Format: FrcuULT.df
FCULT.W wd,ws,wt MSA
FCULT.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Unordered or Less Than
Vector to vector floating-point quiet compare for unordered or less than; if true all destination bits are set, otherwise
clear.
Description: wd[i] « (ws[i] <?(quiet) wt[il])

Set dl bitsto 1 in wd elementsif the corresponding ws floating-point elements are unordered or |ess than wt floating-
point elements, otherwise set al bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
1

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCULT.W
for i in 0 .. WRLEN/32-1
¢ <« UnorderedFP (WR[ws]35i,31. 321+ WRIWE]l355,31 325, 32)
d < LessFP (WR[ws] 321i+31..32i7 WR [wt] 32i+431..3247 32)
WR[wd] 355,31, 325 ¢ (¢ | d)32
endfor
FCULT.D
for i in 0 .. WRLEN/64-1

C <« LeSSFP(WR[WS] 641+63. .6411 WR [Wt] 641+63..6411 64)
d <« UnorderedFP (WRI[wS]lgsiie3..64is WRIWE]lgaii63. 641/ 64)
4
WR[wdlgsi463..641 < C
endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */
endfunction UnorderedFP

function LessThanFP(tt, ts, n)
/* Implementation defined quiet less than compare operation. */
endfunction LessThanFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 166

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Unordered FCUN.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0001 | df wt ws wd 011010
6 4 1 5 5 5 6

Format: rcun.df
FCUN.W wd,ws,wt MSA
FCUN.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Unordered

Vector to vector floating-point quiet compare unordered; if true all destination bits are set, otherwise clear.

Description: wa[i] « (ws[i] ?(quiet) wt[i])

Set all bitsto 1 in wd elements if the corresponding ws and wt floating-point elements are unordered, i.e. at least one
element isaNaN value, otherwise set al bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
1

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCUN.W
for i in 0 .. WRLEN/32-1
¢ <« UnorderedFP (WR [ws]35i,31. 321+ WRIWE]l35i.31 325, 32)
WR [wd] 355,31, 325 ¢ 7
endfor
FCUN.D
for i in 0 .. WRLEN/64-1

¢ <« UnorderedFP (WR [ws]¢zi,63. 621+ WRIWE] 45163 6air 64)
WR[wd] 641463, 641 < C
endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */
endfunction UnorderedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 167

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Quiet Compare Unordered or Not Equal FCUNE.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0010 | df wt ws wd 011100
6 4 1 5 5 5 6

Format: FCUNE.df
FCUNE.W wd,ws,wt MSA
FCUNE.D wd,ws,wt MSA
Purpose: Vector Floating-Point Quiet Compare Unordered or Not Equal
Vector to vector floating-point quiet compare for unordered or not equal; if true all destination bits are set, otherwise
clear.
Description: wd [i] « (ws[i] #? (quiet) wtl[il)

Set al bitsto 1 in wd elementsiif the corresponding ws and wt floating-point elements are unordered or not equal, oth-
erwise set all bitsto 0.

The quiet compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
1

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FCUNE.W
for i in 0 .. WRLEN/32-1
¢ <« UnorderedFP (WR[ws]35i,31. 321+ WRIWE]l355,31 325, 32)
d « NOtEqualFP (WR[WS] 321i+31..321i7 WR[Wt] 32i+431..3247 32)
WR [wdl 355,31, 325 ¢ (¢ |)32
endfor
FCUNE.D
for i in 0 .. WRLEN/64-1

C <« UnorderedFP (WR [ws]¢zi,63. . 641+ WRIWE] 41,63 621 64)
d <« NotEqualFP (WRI[wWSlggiie3. 641/ WRIWElgai,63. 641, 64)
WR [wdl 641,63, 645 < (¢ | A)°*

endfor

function UnorderedFP(tt, ts, n)
/* Implementation defined quiet unordered compare operation. */
endfunction UnorderedFP

function NotEqualFP (tt, ts, n)
/* Implementation defined quiet not equal compare operation. */
endfunction NotEqualFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 168

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Division

FDIV.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0011 | df wt ws wd 011011
6 4 1 5 5 5 6
Format: FDIV.df

FDIV.W wd,ws,wt
FDIV.D wd,ws,wt

Purpose: Vector Floating-Point Division

Vector floating-point division.

Description: wd [i] « ws[i] / wt[i]

MSA
MSA

The floating-point elements in vector ws are divided by the floating-point elements in vector wt. The result is written
to vector wd.

The divide operation is defined by the IEEE Standard for Floating-Point Arithmetic 754"™-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FDIV.W
for 1 in 0 .. WRLEN/32-1
WR [wd]l 333,31, 321 ¢ DivideFP (WR[wsl3zi,31. 32is WRIWEl32i431. 321, 32)
endfor
FDIV.D
for 1 in 0 .. WRLEN/64-1
WR [WAl 643163, 641 ¢ DivideFP (WR([wSlgsises. a1 WRIWElgaii63. 64is 64)
endfor

function DivideFP(tt, ts, n)

/* Implementation defined divide operation.

endfunction DivideFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

*/

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 169

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Down-Convert Interchange Format FEXDO.df

31 26 25 22 21 20 16 15 11 10 6 5
MSA 3RF
011110 1000 |df wt ws wd 011011
6 4 1 5 5 5 6

Format: FEXDO.df

FEXDO.H wd,ws,wt

FEXDO.W wd,ws,wt
Purpose: Vector Floating-Point Down-Convert | nterchange Format
Vector conversion to smaller interchange format.

Description: 1left_half (wd) [1] <« down_convert (ws[i]); right_half (wd) [1] <«
down_convert (wt [1])

MSA
MSA

The floating-point elementsin vectors ws and wt are down-converted to a smaller interchange format, i.e. from 64-bit

to 32-bit, or from 32-bit to 16-hit.

The format down-conversion operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.
16-hit floating-point results are not affected by the flush-to-zero bit FSin MSA Control and Status Register MSACSR.
The operands are values in floating-point data format double the size of df. The results are floating-point values in

dataformat of df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754 ™.

2008.
Operation:
FEXDO.H
for i in 0 .. WRLEN/32-1
f < DownConvertFP (WR[ws]354i,31. .32is 32)
g <« DownConvertFP (WR[wt]s35i,37..32i, 32)
WR [wd] 161 415+wrLEN/2. . 161+WRLEN/2 < T
WR[wdl 163415, 161 < g
endfor
FEXDO.W
for i in 0 .. WRLEN/64-1

f < DownConvertFP (WR([wS]g4i,63. 641+ 64)
g <« DownConvertFP (WRI[wt]lgzii63. 6ais 64)

WR [wd] 351 ,31+wrLEN/2. .321+WRLEN/2 < L
WR[wdl 355431, .321 < 9
endfor

function DownConvertFP (tt, n)
/* Implementation defined format down-conversion. */

endfunction DownConvertFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

170

Vector Floating-Point Base 2 Exponentiation

FEXP2.df

31 26 25 22 21 20 16 15 11 10
MSA 3RF
011110 ou1 wt ws wd 011011
6 4 1 5 5 5 6
Format: FEXP2.df

FEXP2.W wd,ws,wt
FEXP2.D wd,ws,wt

Purpose: Vector Floating-Point Base 2 Exponentiation

Vector floating-point base 2 exponentiation.

Description: wd [i] « ws[i] *

owili]

MSA
MSA

The floating-point elementsin vector ws are scaled, i.e. multiplied, by 2 to the power of integer elementsin vector wt.
The result is written to vector wd.

The operation is the homogeneous scaleB() as defined by the IEEE Standard for Floating-Point Arithmetic 754™.

2008.

The ws operands and wd results are values in floating-point dataformat df. The wt operands are values in integer data

format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754"™-

2008.

Operation:

FEXP2.W

for i in 0

endfor

FEXP2.D

for i in 0

endfor

function Exp2FP(tt,
/* Implementation defined tt * 2% operation. */

endfunction Exp2FP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

. WRLEN/32-1
WR [wd] 354431, 321 ¢ EXP2FP(WR[wWS]335,31. 321, WRIWEI354.31. 321)

. WRLEN/64-1
WR WAl 641463, .6a1 < EXP2FP(WRIWSlgsi,63. . 641, WRIWElgaii63. 641)

ts, n)

171

Vector Floating-Point Up-Convert Interchange Format Left FEXUPL.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110011000 df ws wd 011110
6 9 1 5 5 6

Format: FEXUPL.Af
FEXUPL.W wd,ws MSA
FEXUPL.D wd,ws MSA
Purpose: Vector Floating-Point Up-Convert Interchange Format L eft

Vector left elements conversion to wider interchange format.

Description: wd[i] « up_convert (left_half (ws) [i])

The left half floating-point elements in vector ws are up-converted to a larger interchange format, i.e. from 16-bit to
32-hit, or from 32-bit to 64-bit. The result iswritten to vector wd.

The format up-conversion operation is defined by the |EEE Standard for Floating-Point Arithmetic 754™.2008.
16-bit floating-point inputs are not affected by the flush-to-zero bit FSin MSA Control and Status Register MSACSR.

The operands are values in floating-point data format half the size of df. The results are floating-point values in data
format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FEXUPL.W
for 1 in 0 .. WRLEN/32-1
f « UpConvertFP (WRI[WS]ig; 15,wrLEN/2. . 161+WRLEN/2/ 16)
WRwd] 334431, 326 < £
endfor
FEXUPL.D
for 1 in 0 .. WRLEN/64-1

f < UpConvertFP (WRIWS]35;,314wrLEN/2. 321 +WRLEN/2/ 32)
WR [wdlggise3. 621 < T
endfor

function UpConvertFP(tt, n)
/* Implementation defined format up-conversion. */
endfunction UpConvertFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 172

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Up-Convert Interchange Format Right FEXUPR.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110011001 df ws wd 011110
6 9 1 5 5 6

Format: FEXUPR.Af
FEXUPR.W wd,ws MSA
FEXUPR.D wd,ws MSA
Purpose: Vector Floating-Point Up-Convert Interchange Format Right

Vector right elements conversion to wider interchange format.

Description: wd[i] « up_convert (right_half (ws) [i])

Theright half floating-point elements in vector ws are up-converted to alarger interchange format, i.e. from 16-bit to
32-hit, or from 32-bit to 64-bit. The result iswritten to vector wd.

The format up-conversion operation is defined by the |EEE Standard for Floating-Point Arithmetic 754™.2008.
16-bit floating-point inputs are not affected by the flush-to-zero bit FSin MSA Control and Status Register MSACSR.

The operands are values in floating-point data format half the size of df. The results are floating-point values in data
format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FEXUPR.W
for i in 0 .. WRLEN/32-1
f < UpConvertFP(WRI[ws]igi,15. 161/ 16)
WR[wdl3pi431. 328 ¢ £
endfor
FEXUPR.D
for i in 0 .. WRLEN/64-1

f < UpConvertFP(WR[ws]j35i,31. 321/ 32)
WR[wdlgsi,63..621 < £
endfor

function UpConvertFP(tt, n)
/* Implementation defined format up-conversion. */
endfunction UpConvertFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 173

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Round and Convert from Signed Integer FFINT_S.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110011110 df ws wd 011110

6 9 1 5 5 6

Format: FFINT S.d4f
FFINT _S.W wd, ws MSA
FFINT S.D wd,ws MSA
Purpose: Vector Floating-Point Round and Convert from Signed | nteger

Vector floating-point round and convert from signed integer.
Description: wa[i] « from int_s(ws[i])

The signed integer elementsin ws are converted to floating-point values. The result is written to vector wd.

The integer to floating-point conversion operation is defined by the IEEE Standard for Floating-Point Arithmetic
754™.2008.

The operands are values in integer data format df. The results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FFINT S.W
for i in 0 .. WRLEN/32-1
f <« FromIntSignedFP (WRI[wS]35i,31..32is 32)
WR[wd] 334431, .32 ¢ F
endfor
FFINT S.D
for i in 0 .. WRLEN/64-1

f < FromIntSignedFP (WR([ws]lgsi,63. 6ais 64)
WR[wdlggis63. a1 < T
endfor

function FromFixPointFP(tt, n)
/* Implementation defined signed integer to floating-point
conversion. */
endfunction FromFixPointFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 174

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Convert from Unsigned Integer FFINT_U.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110011111 df ws wd 011110

6 9 1 5 5 6

Format: FFINT U.d4f
FFINT U.W wd,ws MSA
FFINT U.D wd,ws MSA
Purpose: Vector Floating-Point Convert from Unsigned Integer

Vector floating-point convert from unsigned integer.
Description: wd[i] « from int_ u(ws[i])

The unsigned integer elementsin ws are converted to floating-point values. The result is written to vector wd.

The integer to floating-point conversion operation is defined by the IEEE Standard for Floating-Point Arithmetic
754™.2008.

The operands are values in integer data format df. The results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FFINT U.W
for i in 0 .. WRLEN/32-1
f « FromIntUnsignedFP (WRI[wS]35i,31..32:is 32)
WR[wd] 334431, .32 ¢ F
endfor
FFINT U.D
for i in 0 .. WRLEN/64-1

f < FromIntUnsignedFP (WR[wS]lgsi,63..64is 64)
WR[wdlggis63. a1 < T
endfor

function FromIntUnsignedFP (tt, n)
/* Implementation defined unsigned integer to floating-point
conversion. */
endfunction FromIntUnsignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 175

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Convert from Fixed-Point Left FFQL.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110011010 df ws wd 011110

6 9 1 5 5 6

Format: FFQL.dAf
FFQL.W wd,ws MSA
FFQL.D wd,ws MSA

Purpose: Vector Floating-Point Convert from Fixed-Point Left
Vector |eft fix-point elements format conversion to floating-point doubling the element width.

Description: wd[i] « from_g(left_half (ws) [i])

The left half fixed-point elements in vector ws are up-converted to floating-point data format, i.e. from 16-bit Q15 to
32-bit floating-point, or from 32-bit Q31 to 64-hit floating-point. The result iswritten to vector wd.

The fixed-point Q15 or Q31 value is first converted to floating-point as a 16-bit or 32-bit integer (as though it was
scaled up by 21° or 231) and then the resulting floating-point value is scaled down (divided by 21° or 231).

The scaling and integer to floating-point conversion operations are defined by the IEEE Standard for Floating-Point
Arithmetic 754™-2008. No floati ng-point exceptions are possible because the input data is half the size of the out-
put.

The operands are values in fixed-point data format half the size of df. The results are floating-point values in data
format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

FFQL.W
for i in 0 .. WRLEN/32-1
f < FromFixPointFP (WRIWS]ig;,15,wrLEN/2. 161 +WRLEN/2/ 16)
WRwd] 334431, 326 < £
endfor

FFQL.D
for i in 0 .. WRLEN/64-1
f < FromFixPointFP (WR[WS]33i,31.4wriEN/2. . 32i+wRLEN/2/ 32)
WR[wdlggi463..641 < T
endfor

function FromFixPointFP(tt, n)
/* Implementation defined fixed-point to floating-point conversion. */
endfunction FromFixPointFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 176

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Convert from Fixed-Point Right FFQR.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110011011 df ws wd 011110

6 9 1 5 5 6

Format: FFQR.dAf
FFQR.W wd,ws MSA
FFQR.D wd,ws MSA

Purpose: Vector Floating-Point Convert from Fixed-Point Right
Vector right fix-point elements format conversion to floating-point doubling the element width.

Description: wd[i] « from_g(right_half (ws) [i]);

Theright half fixed-point elementsin vector ws are up-converted to floating-point dataformat, i.e. from 16-bit Q15to
32-bit floating-point, or from 32-bit Q31 to 64-hit floating-point. The result iswritten to vector wd.

The fixed-point Q15 or Q31 value is first converted to floating-point as a 16-bit or 32-bit integer (as though it was
scaled up by 21° or 231) and then the resulting floating-point value is scaled down (divided by 21° or 231).

The scaling and integer to floating-point conversion operations are defined by the IEEE Standard for Floating-Point
Arithmetic 754™-2008. No floati ng-point exceptions are possible because the input data is half the size of the out-
put.

The operands are values in fixed-point data format half the size of df. The results are floating-point values in data
format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

FFQR.W
for i in 0 .. WRLEN/32-1
f < FromFixPointFP (WRI[ws] gi 15 .16is 16)
WR[wdl3pi431. 321 ¢ £
endfor

FFQR.D
for i in 0 .. WRLEN/64-1
f < FromFixPointFP (WRI[wtlisi,317. 325, 32)
WRIwS]6sire3. 641 <
endfor

function FromFixPointFP(tt, n)
/* Implementation defined fixed-point to floating-point conversion. */
endfunction FromFixPointFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 177

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Fill from GPR FILL.df

31 26 25 18 17 16 15 11 10 6 5 0
MSA 2R
011110 11000000 df rs wd 011110
6 8 2 5 5 6
Format: FILL.d4f
FILL.B wd, rs MSA
FILL.H wd,rs MSA
FILL.W wd, rs MSA

Purpose: Vector Fill from GPR
Vector elements replicated from GPR.

Description: wd [i] « rs

Replicate GPR rs value to all elementsin vector wd. If the source GPR is wider than the destination data format, the
destination's elements will be set to the least significant bits of the GPR.

Restrictions:

No data-dependent exceptions are possible.

Operation:
FILL.B
for i in 0 .. WRLEN/8-1
WR [wd]g;,7. gi ¢ GPRI[rsl, |
endfor
FILL.H
for i in 0 .. WRLEN/16-1
WR[wdl 165415..161 ¢ GPRIrslis
endfor
FILL.W
for i in 0 .. WRLEN/32-1
WR[wdl 333431, 321 ¢ GPRIrsls; o
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 178

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Base 2 Logarithm FLOG2.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110010111 df ws wd 011110

6 9 1 5 5 6

Format: rLOG2.df
FLOG2.W wd,ws MSA
FLOG2.D wd,ws MSA
Purpose: Vector Floating-Point Base 2 Logarithm

Vector floating-point base 2 logarithm.

Description: wd[i] « log2 (ws[i])

The signed integral base 2 exponents of floating-point elements in vector ws are written as floating-point values to
vector elementswd.

This operation is the homogeneous base 2 logB() as defined by the IEEE Standard for Floating-Point Arithmetic
754™.2008.

The ws operands and wd results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FLOG2.W
for i in 0 .. WRLEN/32-1
1 < Log2FP(WR[wsS]35i,31. .32is 32)
WR[wdl3zi,31. 321 < 1
endfor
FLOG2.D
for i in 0 .. WRLEN/64-1

f < Log2FP(WRI[wS]lgsiie3. 6ai/ 64)
WR WAl g4i463. 645 < £
endfor

function Log2FP (tt, n)
/* Implementation defined logarithm base 2 operation. */
endfunction Log2FP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 179

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Multiply-Add FMADD.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0100 | df wt ws wd 011011
6 4 1 5 5 5 6

Format: FMADD.df
FMADD.W wd,ws,wt MSA
FMADD.D wd,ws,wt MSA
Purpose: Vector Floating-Point Multiply-Add

Vector floating-point multiply-add

Description: wa[i] « wd[i] + ws[i] * wt[i]

The floating-point elements in vector wt multiplied by floating-point elements in vector ws are added to the floating-
point elementsin vector wd. The operation isfused, i.e. computed asif with unbounded range and precision, rounding
only once to the destination format.

The multiply add operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008. The multi pli-
cation between an infinity and a zero signals Invalid Operation exception. If the Invalid Operation exception is dis-
abled, the result is the default quiet NaN.

The operands and results are valuesin floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FMADD.W
for 1 in 0 .. WRLEN/32-1
WR[wd] 334431, 321 <
MultiplyAddFP (WR([wdl3zi,31. 32i, WRIWSl32i431. 321, WRIWED3n5,37 325, 32)
endfor
FMADD.D
for 1 in 0 .. WRLEN/64-1

WR [wd] ga1463..621
MultiplyAddFP (WR[wdlgsi,63. 64ir WRIWSlgaiies. 6ais WRIWEIgui,63. 621, 64)
endfor

function MultiplyAddFP(td, tt, ts, n)
/* Implementation defined multiply add operation. */
endfunction MultiplyAddFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 180

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Maximum

FMAX.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1m0 fdf wt ws wd 011011
6 4 1 5 5 5 6
Format: FMAX.df

Purpose: Vector Floating-Point Maximum

FMAX.W wd,ws,wt
FMAX.D wd,ws,wt

Vector floating-point maximum.

Description: wa[i] « max(ws[i], wt[i])

MSA
MSA

The largest values between corresponding floating-point elements in vector ws and vector wt are written to vector wd.

The largest value is defined by the maxNum operation in the |IEEE Standard for Floating-Point Arithmetic 754™.

2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.

Operation:

FMAX.
for i in 0

FMAX.
for i in 0

W

. WRLEN/32-1

WR [wdl3zi,31. 321 ¢ MaxFP(WRIWSl3pi,31. 32i, WRIWEI323,31. 32i, 32)
endfor

D

. WRLEN/64-1

WR [wdl 643163, 641 ¢ MaxFP(WRI[wWSlgaii63. 64ir WRIWElgsii63. 641/ 64)
endfor

function MaxFP(tt, ts, n)

/* Implementation defined, returns the largest argument.

endfunction MaxFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

*/

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 181

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Maximum Based on Absolute Values FMAX_A.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 mi | wt ws wd 011011
6 4 1 5 5 5 6

Format: rMAX A.df
FMAX A.W wd,ws,wt MSA
FMAX A.D wd,ws,wt MSA
Purpose: Vector Floating-Point Maximum Based on Absolute Values

Vector floating-point maximum based on the magnitude, i.e. absolute values.

Description: wd[i] « absolute value(ws[i]) > absolute value(wt[i])? ws[i]: wt[i]

The value with the largest magnitude, i.e. absolute value, between corresponding floating-point elementsin vector ws
and vector wt are written to vector wd.

The largest absolute value is defined by the maxNumMag operation in the |EEE Standard for Floating-Point Arithme-
tic 754™-2008.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FMAX A.W
for i in 0 .. WRLEN/32-1
WR [wd] 355431, 3251 ¢ MaxAbsoluteFP (WRI[ws]lisi,31. 321/ WRIWE]l35i.31. 32i, 32)
endfor
FMAX A.D
for i in 0 .. WRLEN/64-1
WR [wdl g4i163. 641 ¢ MaxAbsoluteFP (WR[ws]lgsiie3. 641/ WRIWElGaii63. 62is 64)
endfor

function MaxAbsoluteFP(tt, ts, n)

/* Implementation defined, returns the argument with largest
absolute value. For equal absolute values, returns the largest
argument . */

endfunction MaxAbsoluteFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 182

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Minimum FMIN.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1100 fdf wt ws wd 011011
6 4 1 5 5 5 6

Format: FMIN.dAf
FMIN.W wd,ws,wt MSA
FMIN.D wd,ws,wt MSA

Purpose: Vector Floating-Point Minimum

Vector floating-point minimum.

Description: wa[i] « min(ws[i], wt[i])

The smallest value between corresponding floating-point elements in vector ws and vector wt are written to
vector wd.

The smallest value is defined by the minNum operation in the IEEE Standard for Floating-Point Arithmetic 754™.
2008.

The operands and results are valuesin floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FMIN.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ MInFP(WRIwsls5i,31. 321, WRIWE]355,31. 325, 32)
endfor
FMIN.D
for i in 0 .. WRLEN/64-1
WR [Wd] 641463, 641 ¢ MINFP (WRIWSlgai,63. . 62ir WRIWE]gai,63. 6ai/ 64)
endfor

function MinFP(tt, ts, n)
/* Implementation defined, returns the smallest argument. */
endfunction MinFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 183

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Minimum Based on Absolute Values FMIN_A.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1101 fdf wt ws wd 011011
6 4 1 5 5 5 6

Format: FMIN A.df
FMIN A.W wd,ws,wt MSA
FMIN A.D wd,ws,wt MSA
Purpose: Vector Floating-Point Minimum Based on Absolute Values

Vector floating-point minimum based on the magnitude, i.e. absolute values.

Description: wd[i] « absolute value(ws[i]) < absolute value(wt[i])? ws[i]: wt[i]

The value with the smallest magnitude, i.e. absolute value, between corresponding floating-point elements in
vector ws and vector wt are written to vector wd.

The smallest absolute value is defined by the minNumMag operation in the |EEE Standard for Floating-Point Arith-
metic 754™-2008.

The operands and results are valuesin floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FMIN A.W
for i in 0 .. WRLEN/32-1
WR [wd] 355431, 3251 < MinAbsoluteFP (WRI[ws]lisi,31. 321/ WRIWE]l35i.31. 324, 32)
endfor
FMIN A.D
for i in 0 .. WRLEN/64-1
WR [wdl 643163, 641 ¢ MinAbsoluteFP (WR[ws]lgsiie3. 641/ WRIWElGaii63. 62is 64)
endfor

function MinAbsoluteFP (tt, ts, n)

/* Implementation defined, returns the argument with smallest
absolute value. For equal absolute values, returns the smallest
argument . */

endfunction MinAbsoluteFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 184

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Multiply-Sub FMSUB.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0101 | df wt ws wd 011011
6 4 1 5 5 5 6

Format: FMSUB.df
FMSUB.W wd,ws,wt MSA
FMSUB.D wd,ws,wt MSA
Purpose: Vector Floating-Point Multiply-Sub

Vector floating-point multiply-sub

Description: wa[i] « wd[i] - ws[i] * wt[i]

The floating-point elements in vector wt multiplied by floating-point elements in vector ws are subtracted from the
floating-point elements in vector wd. The operation is fused, i.e. computed as if with unbounded range and precision,
rounding only once to the destination format.

The multiply subtract operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™-2008. The
multiplication between an infinity and a zero signals Invalid Operation exception. If the Invalid Operation exception
isdisabled, the result is the default quiet NaN.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FMSUB.W
for 1 in 0 .. WRLEN/32-1
WR[wd] 334431, 321 <
MultiplySubFP (WR([wdl3zi,31. 32i, WRIWSl32i431. 321, WRIWED3n5,37 325, 32)
endfor
FMSUB.D
for 1 in 0 .. WRLEN/64-1

WR [wd] ga1463..621
MultiplySubFP (WR[wdlgsi,63. 64ir WRIWSlgaiies. 641 WRIWEIg4i,63. 621, 64)
endfor

function MultiplySubFP(td, tt, ts, n)
/* Implementation defined multiply subtract operation. */
endfunction MultiplySubFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 185

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Multiplication

FMUL.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0010 | df wt ws wd 011011
6 4 1 5 5 5 6
Format: FMUL.df

FMUL.W wd,ws,wt
FMUL.D wd,ws,wt

MSA
MSA

Purpose: Vector Floating-Point Multiplication

Vector floating-point multiplication.

Description: wd [i] « ws[i] * wt[i]

The floating-point elementsin vector wt are multiplied by the floating-point elements in vector ws. The result iswrit-
ten to vector wd.

The multiplication operation is defined by the |EEE Standard for Floating-Point Arithmetic 754"™-2008.

The operands and results are valuesin floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.

Operation:

FMUL.
for i in 0

FMUL.
for i in 0

W

. WRLEN/32-1

WR[wA] 355431, 325 ¢ MultiplyFP(WRIwS]33i,31. 325, WRIWEI354.31. 321, 32)
endfor

D

. WRLEN/64-1

WR [wdl 643163, 641 ¢ MultiplyFP(WRIwSlgsise3. 641/ WRIWElgaii63. 6ais 64)
endfor

function MultiplyFP (tt,
/* Implementation defined multiplication operation. */
endfunction MultiplyFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

ts, n)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 186

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Approximate Floating-Point Reciprocal FRCP.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110010101 df ws wd 011110

6 9 1 5 5 6

Format: FrcCP.df
FRCP.W wd,ws MSA
FRCP.D wd,ws MSA

Purpose: Vector Approximate Floating-Point Reciprocal
Vector floating-point reciprocal.

Description: wa[i] « 1.0 / ws[i]

The reciprocals of floating-point elements in vector ws are calculated as specified below. The result is written to
vector wd.

The compliant reciprocal operation is defined as 1.0 divided by element value, where the IEEE Standard for Floating-
Point Arithmetic 754™-2008 defined divide operation is affected by the rounding mode bits RM and flush-to-zero
bit FSin MSA Control and Status Register MSACSR. The compliant reciprocals signal all the exceptions specified by
the |EEE Standard for Floating-Point Arithmetic 754™.2008 for the divide operation.

The reciprocal operation is allowed to be approximate. The approximation differs from the compliant reciprocal rep-
resentation by no more than one unit in the least significant place. Approximate reciprocal operations signal the Inex-
act exception if the compliant reciprocal is Inexact or if there is a chance the approximated result may differ from the

compliant reciprocal. Approximate reciprocal operations are allowed to not signal the Overflow or Underflow excep-
tions. The Invalid and divide by Zero exceptions are signaled based on the IEEE Standard for Floating-Point Arithme-

tic 754"™-2008 defined divide operation.
The operands and results are values in floating-point data format df.
Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-
2008.

Operation:
FRCP.W
for i in 0 .. WRLEN/32-1
WR[wd]ssi,31. 321 ¢ ReciprocalFP (WRI[wsl3yi,31. 321, 32)
endfor
FRCP.D
for i in 0 .. WRLEN/64-1
WR [wdl g4i163. 641 ¢ ReciprocalFP (WR[ws]lgsiie3. 64is 64)
endfor

function ReciprocalFP(tt, ts, n)
/* Implementation defined Reciprocal operation. */
endfunction ReciprocalFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 187

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Round to Integer FRINT.df
31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110010110 df ws wd 011110
6 9 1 5 5 6
Format: FRINT.Af
FRINT.W wd,ws MSA
FRINT.D wd,ws MSA

Purpose: Vector Floating-Point Round to | nteger

Vector floating-point round to integer.

Description: wd[i] « round_ int (ws[i])

The floating-point elements in vector ws are rounded to an integral valued floating-point number in the same format
based on the rounding mode bits RM in MSA Control and Status Register MSACSR. The result is written to

vector wd.

The round to integer operation is exact as defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008,
i.e. the Inexact exception is signaled if the result does not have the same numerical value as the input operand.

The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.

Operation:

FRINT.W

for i in 0

. WRLEN/32-1

f < RoundIntFP (WRI[wS]35i,31. 321/

WR[wdl3zi,31. 321 <

endfor

FRINT.D

for i in 0

. WRLEN/64-1

f < RoundIntFP (WRI[wS]lgaii63. 641

WR WAl g4i463. 645 < £

endfor

function RoundIntFP (tt, n)
/* Implementation defined round to integer operation. */
endfunction RoundIntFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

32)

64)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 188

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Approximate Floating-Point Reciprocal of Square Root FRSQRT.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110010100 df ws wd 011110

6 9 1 5 5 6

Format: FRSQRT.df
FRSQRT.W wd,ws MSA
FRSQRT.D wd,ws MSA

Purpose: Vector Approximate Floating-Point Reciprocal of Square Root
Vector floating-point reciprocal of square root.

Description: wa[i] « 1.0 / sgrt(ws[i])

The reciprocals of the square roots of floating-point elements in vector ws are calculated as specified below. The
result is written to vector wd.
The compliant reciprocal of the square root operation is defined as 1.0 divided by the sgquare root of the element

value, where the |IEEE Standard for Floating-Point Arithmetic 754™-2008 defined divide and square root operations
are affected by the rounding mode bits RM and flush-to-zero bit FS in MSA Control and Status Register MSACSR.
The compliant reciprocals of the square roots signal al the exceptions specified by the IEEE Standard for Floating-

Point Arithmetic 754™-2008 for the divide and square roots operations.

Thereciprocal of the square root operation is allowed to be approximate. The approximation differs from the compli-
ant reciprocal of the square root representation by no more than two units in the least significant place. Approximate
reciprocal of the square root operations signal the Inexact exception if the compliant reciprocal of the square root is

Inexact or if there is a chance the approximated result may differ from the compliant reciprocal of the square root.
The Invalid and divide by Zero exceptions are signaled based on the IEEE Standard for Floating-Point Arithmetic

754™.2008 defined divide operation.
The operands and results are values in floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FRSQRT.W
for i in 0 .. WRLEN/32-1
f < SquareRootReciprocalFP (WR[wsS]35i,31. .32is 32)
WR[wd] 334431, .32 ¢ F
endfor
FRSQRT.D
for i in 0 .. WRLEN/64-1

f < SquareRootReciprocalFP (WR[wslgsi,63. 641/ 6%4)
WR[wdlgsi463. 6201 ¢ £
endfor

function SquareRootReciprocalFP(tt, ts, n)
/* Implementation defined square root reciprocal operation. */
endfunction SquareRootReciprocalFP

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 189

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 190

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Signaling Compare Always False FSAF.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1000 |df wt ws wd 011010
6 4 1 5 5 5 6

Format: rsar.df
FSAF.W wd,ws,wt MSA
FSAF.D wd,ws,wt MSA
Purpose: Vector Floating-Point Signaling Compare Always False

Vector to vector floating-point signaling compare always false; all destination bits are clear.

Description: wd[i] « signalingFalse (ws[i], wt[i])
Set dl bitsto 0 in wd elements. Signaling and quiet NaN elementsin ws or wt signal Invalid Operation exception.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSAF.W
for 1 in 0 .. WRLEN/32-1
WR [wdl 333,31, 321 < SignalingFALSE (WR[wsS]3pi,31. 321, WRIWElspi,37 325, 32)
endfor
FSAF.D
for 1 in 0 .. WRLEN/64-1
WR [wd]lgqi463. 641 < SignalingFALSE (WR[wSl¢ai63. 621+ WRIWElgai,63. 621/ 64)
endfor

function SignalingFALSE (tt, ts, n)
/* Implementation defined signaling and quiet NaN test */
return 0
endfunction SignalingFALSE
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 191

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Signhaling Compare Equal FSEQ.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 100 fdf wt ws wd 011010
6 4 1 5 5 5 6

Format: FrseQ.df
FSEQ.W wd,ws,wt MSA
FSEQ.D wd,ws,wt MSA
Purpose: Vector Floating-Point Signaling Compare Equal

Vector to vector floating-point signaling compare for equality; if true all destination bits are set, otherwise clear.

Description: wd[i] « (ws[i] =(signaling) wt[i])

Set dl bitsto 1 in wd elementsif the corresponding ws and wt floating-point elements are equal, otherwise set all bits
to 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSEQ.W
for 1 in 0 .. WRLEN/32-1
C ¢ EqualSigFP(WRI[WSl35i,31. 32i, WRIWEl3pi,31. 321, 32)
WR [wd] 355,31, 325 ¢ 7
endfor
FSEQ.D
for 1 in 0 .. WRLEN/64-1

C < EqualSigFP(WRI[WSlgii,63.. 641 WRIWEIgai,63. 621, 64)
WR WAl g41463. 641 ¢ C
endfor

function EqualSigFP(tt, ts, n)
/* Implementation defined signaling equal compare operation. */
endfunction EqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 192

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Signaling Compare Less or Equal

31 26 25 22 21 20 16 15 11 10 5
MSA 3RF
011110 1m0 fdf wt ws wd 011010
6 4 1 5 5 5 6

Format: FSLE.df

FSLE.W wd,ws,wt
FSLE.D wd,ws,wt

Purpose: Vector Floating-Point Signaling Compare Less or Equal

FSLE.df

MSA
MSA

Vector to vector floating-point signaling compare for less than or equal; if true all destination bits are set, otherwise

clear.

Description: wa[i] « (ws[i] <=(signaling) wt[i])

Set dl bitsto 1 inwd elements if the corresponding ws floating-point elements are less than or equal to wt floating-
point elements, otherwise set al bitsto 0.

The signaling compare operation is defined by the |IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to

0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.

Operation:

FSLE.W
for i in 0

C ¢« LessSigFP (WRIwsl3yi,31. 3260 WRIWED333431. 321,
d < EqualSigFP (WRI[wSl3yi,31 .32i, WRIWED355,31. 321,
WR[Wd] 355,31, 321 < (c | &)?

endfor

FSLE.D
for i in 0

¢ < LessSigFP(WRI[wSlgsi,e3. 641 WRIWEIgaii63. .6ais
d < EqualSigFP (WR[wSlgsit63.. 641 WRIWE]Gaiie3. 641/
WR WAl gai463. 621 < (c | d)°*

endfor

. WRLEN/32-1

. WRLEN/64-1

function LessThanSigFP(tt, ts, n)

/* Implementation defined signaling less than compare operation.

endfunction LessThanSigFP

function EqualSigFP(tt,

/* Implementation defined signaling equal compare operation.

endfunction EqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

ts, n)

32)
32)

64)
64)

*/

*/

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

193

Vector Floating-Point Signaling Compare Less Than FSLT.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1100 fdf wt ws wd 011010
6 4 1 5 5 5 6

Format: rsLT.df
FSLT.W wd,ws,wt MSA
FSLT.D wd,ws,wt MSA
Purpose: Vector Floating-Point Signaling Compare Less Than

Vector to vector floating-point signaling compare for less than; if true all destination bits are set, otherwise clear.

Description: wd[i] « (ws[i] <(signaling) wt[i])

Set al bitsto 1 inwd elements if the corresponding ws floating-point elements are less than wt floating-point ele-
ments, otherwise set all bitsto 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSLT.W
for i in 0 .. WRLEN/32-1
c < LessSigFP(WRI[wslisi,31. 321+ WRIWE]l35i431. 321, 32)
WR [wd] 355,31, 325 ¢ 7
endfor
FSLT.D
for i in 0 .. WRLEN/64-1

¢ < LessSigFP(WRI[wslgsii63. 641+ WRIWE] gaii63. 6air 64)
WR[wdl6sis63. 641 < C
endfor

function LessThanSigFP(tt, ts, n)
/* Implementation defined signaling less than compare operation. */
endfunction LessThanSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 194

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Signaling Compare Not Equal FSNE.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1011 fdf wt ws wd 011100
6 4 1 5 5 5 6

Format: FsSNE.df
FSNE.W wd,ws,wt MSA
FSNE.D wd,ws,wt MSA
Purpose: Vector Floating-Point Signaling Compare Not Equal

Vector to vector floating-point signaling compare for not equal; if true all destination bits are set, otherwise clear.

Description: wa[i] « (ws[i] #(signaling) wt[i])

Set dl bitsto 1 in wd elements if the corresponding ws and wt floating-point elements are not equal, otherwise set all
bitsto 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSNE.W
for i in 0 .. WRLEN/32-1
c <« NotEqualSigFP (WR([ws]35;i.31. 32i+ WRIWEI35i,31. 321, 32)
WR [wd] 355,31, 325 ¢ 7
endfor
FSNE.D
for i in 0 .. WRLEN/64-1

C <« NotEqualSigFP (WRI[wS]lggii63. 641+ WRIWE]g4i,63. 6air 64)
WR[wdlggi463..641 < C
endfor

function NotEqualSigFP(tt, ts, n)
/* Implementation defined signaling not equal compare operation. */
endfunction NotEqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 195

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Signaling Compare Ordered FSOR.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1001 |df wt ws wd 011100
6 4 1 5 5 5 6

Format: FsoOr.df
FSOR.W wd,ws,wt MSA
FSOR.D wd,ws,wt MSA
Purpose: Vector Floating-Point Signaling Compare Ordered

Vector to vector floating-point signaling compare ordered; if true all destination bits are set, otherwise clear.

Description: wd[i] « ws[i] !?(signaling) wt[i]

Set all bitsto 1 inwd elementsiif the corresponding ws and wt floating-point elements are ordered, i.e. both elements
are not NaN values, otherwise set al bitsto 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
0.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSOR.W
for i in 0 .. WRLEN/32-1
¢ <« OrderedSigFP (WRI[wS]35i,31. .32i, WRIWtlszsi,31. 321, 32)
WR [wd] 355,31, 325 ¢ 7
endfor
FSOR.D
for i in 0 .. WRLEN/64-1

¢ < OrderedSigFP (WRI[WSlggi,e3. 641 WRIWElgai,63. 621, 64)
WR[wdlgsi463. 621 ¢ C
endfor

function OrderedSigFP(tt, ts, n)
/* Implementation defined signaling ordered compare operation. */
endfunction OrderedSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 196

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Square Root FSQRT.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110010011 df ws wd 011110

6 9 1 5 5 6

Format: FSQRT.df
FSQRT.W wd,ws MSA
FSQRT.D wd,ws MSA

Purpose: Vector Floating-Point Sgquare Root
Vector floating-point square root.

Description: wd[i] « sgrt(ws[i])

The sguare roots of floating-point elements in vector ws are written to vector wd.

The sguare root operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.
The operands and results are valuesin floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSQRT.W
for i in 0 .. WRLEN/32-1
f < SquareRootFP (WRI[ws]l35i,31.. 321, 32)
WR[wd] 334431, .32 ¢ F
endfor
FSQRT.D
for i in 0 .. WRLEN/64-1

f < SquareRootFP (WRI[wslgsi,63. . 6ais 64)
WR WAl 641463, 645 < £
endfor

function SquareRootFP(tt, tsg, n)
/* Implementation defined square root operation. */
endfunction SquareRootFP

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 197

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Subtraction

31 26 25 22 21 20 16 15 11 10 6 5
MSA 3RF
011110 0001 | df wt ws wd 011011
6 4 1 5 5 5 6
Format: FSUB.df

FSUB.W wd,ws,wt
FSUB.D wd,ws,wt

Purpose: Vector Floating-Point Subtraction

Vector floating-point subtraction.

Description: wd [i] « ws[i] - wt[i]

FSUB.df

MSA
MSA

The floating-point elements in vector wt are subtracted from the floating-point elements in vector ws. The result is
written to vector wd.

The subtract operation is defined by the |EEE Standard for Floating-Point Arithmetic 754"™-2008.
The operands and results are valuesin floating-point data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSUB.W
for 1 in 0 .. WRLEN/32-1
WR (WAl 333431, 321 ¢ SubtractFP(WRIwS]3pi,31. 321, WRIWEDl32i,37 325, 32)
endfor
FSUB.D
for 1 in 0 .. WRLEN/64-1

WR [wdl 643163, 641 ¢ SubtractFP(WRIwSlesises. 641 WRIWElgaii63. 64is 64)

endfor

function SubtractFP(tt, ts, n)
/* Implementation defined subtract operation. */
endfunction SubtractFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

198

Vector Floating-Point Signaling Compare Unordered or Equal FSUEQ.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1011 fdf wt ws wd 011010
6 4 1 5 5 5 6

Format: FSUEQ.df
FSUEQ.W wd,ws,wt MSA
FSUEQ.D wd,ws,wt MSA
Purpose: Vector Floating-Point Signaling Compare Unordered or Equal
Vector to vector floating-point signaling compare for unordered or equality; if true all destination bits are set, other-
wise clear.
Description: wa[i] « (ws[i] =?(signaling) wt[i])

Set all bitsto 1 in wd elements if the corresponding ws and wt floating-point elements are unordered or equal, other-
wise set all bitsto 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
1

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSUEQ.W
for i in 0 .. WRLEN/32-1
¢ <« UnorderedSigFP (WRI[ws]l35i431. 321/ WRIWE]l355431. 321, 32)
d « EqualS:LgFP (WR[WS] 321431..32ir WR[Wt] 321+31..32ir 32)
WR[Wd] 355,31, 321 < (c | &)?
endfor
FSUEQ.D
for i in 0 .. WRLEN/64-1

C <« UnorderedSigFP(WR[wWS]lgsii63..641+ WRIWE]gaii63. 621/ 64)
d < EqualSigFP (WRI[wWSlggiie3. 641/ WRIWElgai,63. 641, 64)
WR [wdl 641,63, 645 < (¢ | A)°*

endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */
endfunction UnorderedSigFP

function EqualSigFP(tt, ts, n)
/* Implementation defined signaling equal compare operation. */
endfunction EqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 199

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Signaling Compare Unordered or Less or Equal

FSULE.df

31 26 25 22 21 20 16 15 11 10 6 5
MSA 3RF
011110 mi | wt ws wd 011010
6 4 1 5 5 5 6

Format: FSULE.df
FSULE.W wd,ws,wt
FSULE.D wd,ws,wt

Purpose: Vector Floating-Point Signaling Compare Unordered or Less or Equal

MSA
MSA

Vector to vector floating-point signaling compare for unordered or less than or equal; if true all destination bits are

set, otherwise clear.

Description: wd[i] « (ws[i] <=?(signaling) wt[il])

Set al bitsto 1 inwd elements if the corresponding ws floating-point elements are unordered or less than or equal
to wt floating-point elements, otherwise set all bitsto 0.

The signaling compare operation is defined by the |IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to

1.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSULE.W
for i in 0 .. WRLEN/32-1
¢ <« UnorderedSigFP (WRI[ws]l35i431. 321/ WRIWE]l355431. 321, 32)
d « LeSSSlgFP(WR [WS] 32i+431..3247 WR[Wt]32i+3l..32i’ 32)
e <« EqualSigFP (WRI[wSlipi,31. 325, WRIWEl35i431. 321, 32)
WRWA]l 351,31, 321 < (¢ | d | e)??
endfor
FSULE.D
for i in 0 .. WRLEN/64-1

C <« UnorderedSigFP (WRI[wWSlggii63.. 641/ WRIWElgai,63. 621, 64)
d « LessSigFP(WR([wSlgsis63.. 641, WRIWElgai163. 621+ 64)
e <« EqualSigFP (WRI[wSlgsi,63. 645 WRIWElG4i,63. 6air 64)
WR WAl gais63. 621 < (c | d |)%
endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */
endfunction UnorderedSigFP

function LessThanSigFP(tt, ts, n)
/* Implementation defined signaling less than compare operation. */
endfunction LessThanSigFP

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

200

Vector Floating-Point Signaling Compare Unordered or Less or Equal FSULE.df

function EqualSigFP(tt, ts, n)
/* Implementation defined signaling equal compare operation. */
endfunction EqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 201

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Signaling Compare Unordered or Less Than

FSULT.df

31 26 25 22 21 20 16 15 11 10
MSA 3RF
011110 1101 fdf wt ws wd 011010
6 4 1 5 5 5 6

Format: FSULT.df
FSULT.W wd,ws,wt
FSULT.D wd,ws,wt

Purpose: Vector Floating-Point Signaling Compare Unordered or Less Than

MSA
MSA

Vector to vector floating-point signaling compare for unordered or less than; if true al destination bits are set, other-

wise clear.

Description: wa[i] « (ws[i] <?(signaling) wt[i])

Set dl bitsto 1 in wd elementsif the corresponding ws floating-point elements are unordered or |ess than wt floating-

point elements, otherwise set al bitsto 0.

The signaling compare operation is defined by the IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to

1.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSULT.W
for i in 0 .. WRLEN/32-1
Cc <« UnorderedSigFP (WRI[ws]l35i,31.. 321+ WRIWEl35i431. 321/
d « LeSSSlgFP(WR [WS] 32i+431..3247 WR[Wt]32i+3l..32i’ 32)
WR[wd] 355,31, 325 ¢ (¢ |)32
endfor
FSULT.D

for i1 in 0 . WRLEN/64-1
¢ <« UnorderedSigFP (WR[wSlgsires. eaisr WRIWElgai,63. gair 64)
d ¢ LessSigFP(WRI[wSlgsi,63, 641, WRIWEIgai,63. 621, 64)
WR WAl gai463. 621 < (c | d)°*

endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */
endfunction UnorderedSigFP

function LessThanSigFP(tt, ts, n)
/* Implementation defined signaling less than compare operation. */
endfunction LessThanSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

202

Vector Floating-Point Signaling Compare Unordered FSUN.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1001 |df wt ws wd 011010
6 4 1 5 5 5 6

Format: rsun.df
FSUN.W wd,ws,wt MSA
FSUN.D wd,ws,wt MSA
Purpose: Vector Floating-Point Signaling Compare Unordered

Vector to vector floating-point signaling compare unordered; if true all destination bits are set, otherwise clear.

Description: wd[i] « (ws[i] ?(signaling) wt[i])

Set all bitsto 1 in wd elements if the corresponding ws and wt floating-point elements are unordered, i.e. at least one
element isaNaN value, otherwise set al bitsto 0.

The signaling compare operation is defined by the |IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
1

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSUN.W
for i in 0 .. WRLEN/32-1
¢ <« UnorderedSigFP (WRI[ws]l35i,431. 321/ WRIWE]l355431. 321, 32)
WR [wd] 355,31, 325 ¢ 7
endfor
FSUN.D
for i in 0 .. WRLEN/64-1

¢ <« UnorderedSigFP (WR[wsS]lgaii63.. 641+ WRIWE]gaii63. 6a1r 64)
WR [wd] 645463, 645 ¢ C°
endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */
endfunction UnorderedSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 203

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Signaling Compare Unordered or Not Equal FSUNE.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 100 fdf wt ws wd 011100
6 4 1 5 5 5 6

Format: FSUNE.df
FSUNE.W wd,ws,wt MSA
FSUNE.D wd,ws,wt MSA
Purpose: Vector Floating-Point Signaling Compare Unordered or Not Equal
Vector to vector floating-point signaling compare for unordered or not equal; if true all destination bits are set, other-
wise clear.
Description: wd[i] « (ws[i] #? (signaling) wt[il])

Set al bitsto 1 in wd elementsiif the corresponding ws and wt floating-point elements are unordered or not equal, oth-
erwise set all bitsto 0.

The signaling compare operation is defined by the |IEEE Standard for Floating-Point Arithmetic 754™.2008.

The Inexact Exception is not signaled when subnormal input operands are flushed based on the flush-to-zero bit FSin
MSA Control and Status Register MSACSR. In case of a floating-point exception, the default result has al bits set to
1

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible as specified by the IEEE Standard for Floating-Point Arithmetic 754™-

2008.
Operation:
FSUNE.W
for i in 0 .. WRLEN/32-1
¢ <« UnorderedSigFP (WRI[ws]l35i431. 321/ WRIWE]l355431. 321, 32)
d « NOtEqualSlgFP(WR[WS] 32i+431..3247 WR[Wt] 321+31..32i7 32)
WR[wd] 355,31, 325 ¢ (¢ |)32
endfor
FSUNE.D
for i in 0 .. WRLEN/64-1

¢ <« UnorderedSigFP (WR[wSlgsires. eaisr WRIWElgai,63. gair 64)
C <« NotEqualSigFP (WRI[wsSl¢giie3. 621+ WRIWE]gsi,63. 6ais 64)
WR [wdl 45463, 641 < (c | @)

endfor

function UnorderedSigFP(tt, ts, n)
/* Implementation defined signaling unordered compare operation. */
endfunction UnorderedSigFP

function NotEqualSigFP(tt, ts, n)
/* Implementation defined signaling not equal compare operation. */
endfunction NotEqualSigFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 204

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Convert to Signed Integer FTINT_S.df
31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110011100 df ws wd 011110
6 9 1 5 5 6
Format: FTINT S.df
FTINT S.W wd,ws MSA
FTINT S.D wd,ws MSA

Purpose: Vector Floating-Point Convert to Signed | nteger

Vector floating-point convert to signed integer.

Description: wd[i] « to_int_s(ws[il])

The floating-point elementsin ws are rounded and converted to signed integer values based on the rounding mode bits
RM in MSA Control and Status Register MSACSR. The result is written to vector wd.
The floating-point to integer conversion operation is exact as defined by the IEEE Standard for Floating-Point Arith-

metic 754™-2008, i.e. the Inexact exception is signaled if the result does not have the same numerical value as the
input operand. In this case, the default result is the rounded result.

NaN values and numeric operands converting to an integer outside the range of the destination format signa the
Invalid Operation exception. For positive numeric operands outside the range, the default result is the largest signed
integer value. The default result for negative numeric operands outside the range is the smallest signed integer value.
The default result for NaN operandsis zero.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTINT S.W
for i in 0 .. WRLEN/32-1

f < ToIntSignedFP (WRI[wsS]35i,31. 321/

WR[wdl35i431..321 ¢ £

endfor

FTINT S.D
for i in 0 .. WRLEN/64-1

f < ToIntSignedFP (WRI[wSlgsiie3. 64ir

WR[wdlgsi463..641 < £

endfor

function ToIntSignedFP(tt, n)
/* Implementation defined floating-point rounding and signed

integer conversion. */

endfunction ToIntSignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

32)

64)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 205

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Round and Convert to Unsigned Integer FTINT_U.df

31 26 25 17 16 15 11 10 6 5 0
MSA 2RF
011110 110011101 df ws wd 011110

6 9 1 5 5 6

Format: FTINT U.d4f
FTINT U.W wd,ws MSA
FTINT U.D wd,ws MSA

Purpose: Vector Floating-Point Round and Convert to Unsigned | nteger
Vector floating-point round and convert to unsigned integer.

Description: wd[i] « to_int u(ws[il])

The floating-point elements in ws are rounded and converted to unsigned integer values based on the rounding mode
bits RM in MSA Control and Status Register MSACSR. The result is written to vector wd.

The floating-point to integer conversion operation is exact as defined by the |IEEE Standard for Floating-Point Arith-
metic 754™-2008, i.e. the Inexact exception is signaled if the result does not have the same numerical value as the
input operand. In this case, the default result is the rounded result.

NaN values and numeric operands converting to an integer outside the range of the destination format signa the
Invalid Operation exception. For positive numeric operands outside the range, the default result is the largest unsigned
integer value. The default result for negative numeric operandsis zero. The default result for NaN operands is zero.

The operands are valuesin floating_point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTINT U.W
for i in 0 .. WRLEN/32-1
f < ToIntUnsignedFP (WRI[ws]35i,31..32is 32)
WR[wdl3pi431. 321 ¢ £
endfor

FTINT U.D
for i in 0 .. WRLEN/64-1
f < ToIntUnsignedFP (WRI[wSlgsii63..64is ©64)
WR[wdlgsi463. 601 < £
endfor

function ToIntUnsignedFP(tt, n)
/* Implementation defined floating-point rounding and unsigned
integer conversion. */
endfunction ToIntUnsignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 206

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Convert to Fixed-Point FTQ.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 100 fdf wt ws wd 011011
6 4 1 5 5 5 6

Format: FTQ.df
FTQ.H wd,ws,wt MSA
FTQ.W wd,ws,wt MSA

Purpose: Vector Floating-Point Convert to Fixed-Point
Vector fix-point format conversion from floating-point.

Description: 1eft_half (wd) [1] « to_g(ws[i]); right_half (wd) [1] « to_g(wt[i])

The floating-point elements in vectors ws and wt are down-converted to a fixed-point representation, i.e. from 64-bit
floating-point to 32-bit Q31 fixed-point representation, or from 32-bit floating-point to 16-bit Q15 fixed-point repre-
sentation.

The floating-point data inside the fixed-point range is first scaled up (multiplied by 21° or 231) and then rounded and
converted to a 16-bit or 32-bit integer based on the rounding mode bits RM in MSA Control and Status
Register MSACSR. The resulting value is the Q15 or Q31 representation.

The scaling and floating-point to integer conversion operations are defined by the IEEE Standard for Floating-Point

Arithmetic 754"™-2008. The integer conversion operation is exact, i.e. the Inexact exception is signaled if the result
does not have the same numerical value as the input operand. In this case, the default result is the rounded result.

NaN values signa the Invalid Operation exception. Numeric operands converting to fixed-point values outside the
range of the destination format signal the Overflow and the Inexact exceptions. For positive numeric operands outside
the range, the default result is the largest fixed-point value. The default result for negative numeric operands outside
the range is the smallest fixed-point value. The default result for NaN operandsis zero.

The operands are values in floating-point data format df. The results are fixed-point values in dataformat half the size
of df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTQ.H
for i in 0 .. WRLEN/32-1
q < ToFixPointFP ((WR[wsli3si,31. 321/ 32)
r < TOFixPointFP ((WR[wt]lisi,31. 321, 32)
WR[wd] 165415:wrtEN/2. . 161+wRIEN/2 < O
WR[wd] 165415, 161 < T
endfor

FTQ.W
for i in 0 .. WRLEN/64-1
g <« TOFixPointFP ((WR[wsSlgsiie3. gaisr 64)
r < ToFixPointFP ((WRI[wWtlgsi,e3. 6ais 64)
WR [wd] 324 431+wRLEN/2. . 321+WRLEN/2 < O
WR([wd]l 355431, .321 ¢ T
endfor

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 207

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 208

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Floating-Point Truncate and Convert to Signed Integer

31 26

25

17 16 15

11 10

FTRUNC_S.df

MSA
011110

110010001

ws

wd

2RF
011110

6

9

Format: FTRUNC S.df
FTRUNC_S.W wd,ws
FTRUNC_S.D wd,ws

Purpose: Vector Floating-Point Truncate and Convert to Signed Integer

Vector floating-point truncate and convert to signed integer.

Description: wd[i] « truncate to_int_s(ws[i])

6

MSA
MSA

The floating-point elements inws are truncated, i.e. rounded toward zero, to signed integer values. The rounding

mode bits RM in MSA Control and Status Register MSACSR are not used. The result is written to vector wd.

The floating-point to integer conversion operation is exact as defined by the |IEEE Standard for Floating-Point Arith-
metic 754™-2008, i.e. the Inexact exception is signaled if the result does not have the same numerical value as the

input operand. In this case, the default result is the rounded result.

NaN values and numeric operands converting to an integer outside the range of the destination format signa the
Invalid Operation exception. For positive numeric operands outside the range, the default result is the largest signed
integer value. The default result for negative numeric operands outside the range is the smallest signed integer value.

The default result for NaN operandsis zero.

The operands are values in floating-point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTRUNC_S.W

for i in 0
f < TruncToIntSignedFP (WR[ws]35i,31. 321/

. WRLEN/32-1

WR[wdl355431..321 ¢ £

endfor

FTRUNC_S.D

for i in 0
f < TruncToIntSignedFP (WR([wWsSlgsii63. 641

. WRLEN/64-1

WR[wdlgsi463..641 < £

endfor

function TruncToIntSignedFP (tt, n)

/* Implementation defined floating-point truncation and signed

endfunction TruncToIntSignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

integer conversion.

*/

32)

64)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

209

Vector Floating-Point Truncate and Convert to Unsigned Integer FTRUNC_U.df
31 26 25 17 16 15 11 10 0
MSA 2RF
011110 110010010 df ws wd 011110
6 9 1 5 5 6
Format: FTRUNC U.df

FTRUNC U.W wd,ws MSA
FTRUNC _U.D wd,ws MSA

Purpose: Vector Floating-Point Truncate and Convert to Unsigned I nteger

Vector floating-point truncate and convert to unsigned integer.

Description: wd[i] « truncate to_int_u(ws[i])

The floating-point elements in ws are truncated, i.e. rounded toward zero, to unsigned integer values. The rounding
mode bits RM in MSA Control and Status Register MSACSR are not used. The result is written to vector wd.
The floating-point to integer conversion operation is exact as defined by the IEEE Standard for Floating-Point Arith-

metic 754™-2008, i.e. the Inexact exception is signaled if the result does not have the same numerical value as the
input operand. In this case, the default result is the rounded result.

NaN values and numeric operands converting to an integer outside the range of the destination format signa the
Invalid Operation exception. For positive numeric operands outside the range, the default result is the largest unsigned
integer value. The default value for negative numeric operands is zero. The default result for NaN operandsis zero.

The operands are valuesin floating_point data format df. The results are valuesin integer data format df.

Restrictions:

Data-dependent exceptions are possible.

Operation:

FTRUNC U.W
for i in 0 .. WRLEN/32-1

f < TruncToIntUnsignedFP (WR[ws]35i,31..32is 32)
WR[wd]l3zi431. 321 < £

endfor

FTRUNC U.D
for i in 0 .. WRLEN/64-1

f < TruncToIntUnsignedFP (WR([wSlgsii63. 641+ 64)
WR[wdlggi463. 641 < T

endfor

function TruncToIntUnsignedFP(tt, n)

/* Implementation defined floating-point truncation and unsigned

integer conversion. */

endfunction TruncToIntUnsignedFP

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception, MSA Floating Point Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 210

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Horizontal Add

HADD_S.df

31 26 25 23 22 21 20 16 15 0
MSA 3R
011110 100 of wt ws 010101
6 3 2 5 5 6

Format: HADD s.df
HADD S.H wd,ws,wt
HADD S.W wd,ws,wt
HADD S.D wd,ws,wt

Purpose: Vector Signed Horizontal Add

MSA
MSA
MSA

Vector sign extend and pairwise add the odd elements with the even elements to double width elements

Description: (wd[2i+1], wd[2i]) <« signed(ws[2i+1]) + signed(wt[2i])

The sign-extended odd elements in vector ws are added to the sign-extended even elements in vector wt producing a

result twice the size of the input operands. The result is written to vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
HADD S.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ hadd_s(WRI[wS]igi,15. 161, WRIWEI16i,15. 161+ 8)
endfor
HADD S.W
for i in 0 .. WRLEN/32-1
WR[wd] 355,31, .321 ¢ hadd_s(WRIwS]3pi,31. 3214, WRIWEI353i,31 321, 16)
endfor
HADD S.D
for i in 0 .. WRLEN/64-1
WR [wdl 643163, 641 ¢ hadd_s(WRIwSlgsiies. 6air WRIWE]gsii63 32)
endfor
function hadd _s(ts, tt, n)
t « ((tspn)™ || tSan1..n) + ((ttn)™ [[ttaa o)
return t
endfunction hadd s
Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 211

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Horizontal Add

HADD_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 101 of wt ws wd 010101
6 3 2 5 5 5 6

Format: HADD U.df
HADD U.H wd,ws,wt
HADD U.W wd,ws,wt
HADD U.D wd,ws,wt

Purpose: Vector Unsigned Horizontal Add

MSA
MSA
MSA

Vector zero extend and pairwise add the odd elements with the even elements to double width elements

Description: (wd[2i+1], wd[2i]) <« unsigned(ws[2i+1]) + unsigned (wt[2i])

The zero-extended odd elements in vector ws are added to the zero-extended even elements in vector wt producing a

result twice the size of the input operands. The result is written to vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
HADD U.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ hadd u(WRI[ws]igi,15. 161, WRIWEI16i,15. 161+ 8)
endfor
HADD U.W
for i in 0 .. WRLEN/32-1
WR [wdl 333,31, 321 < hadd_u(WRIwslspi,31. 325, WRIWEl355,31 32i, 16)
endfor
HADD U.D
for i in 0 .. WRLEN/64-1
WR[wdlgsi463. 641 ¢ hadd_u(WRIwslgsi,e3. . 6air WRIWE]lGaii63. 641/ 32)
endfor
function hadd u(ts, tt, n)
t « (0" || tsanoq..n) + (0% || ttnq. o)
return t
endfunction hadd u
Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 212

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Horizontal Subtract HSUB_S.df
31 26 25 23 22 21 20 16 15 0
MSA 3R
011110 1o | df wt ws 010101
6 3 2 5 5 6
Format: HSUB_s.df

HSUB_S.H wd,ws,wt MSA
HSUB_S.W wd,ws,wt MSA
HSUB_S.D wd,ws,wt MSA

Purpose: Vector Signed Horizontal Subtract

Vector sign extend and pairwise subtract the even elements from the odd elements to double width elements

Description: (wd[2i+1], wd[2i]) <« signed(ws[2i+1]) - signed(wt[2i])

The sign-extended odd elements in vector wt are subtracted from the sign-extended even elements in vector wt pro-

ducing a signed result twice the size of the input operands. The result is written to vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
HSUB_S.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢« hsub_s(WRI[ws]igi,15. 161, WRIWEI 161,15, 161+
endfor
HSUB_S.W
for i in 0 .. WRLEN/32-1
WR[wd] 351,31, .321 ¢ hsub_s(WRIwS]35i,31. 321, WRIWEI 353,31 321
endfor
HSUB_S.D
for i in 0 .. WRLEN/64-1
WR [Wd] 641463, 641 ¢ hsub_s(WRI[wSlgsi,63. 6a1r WRIWEIgaii63. 62i-
endfor

function hsub s (ts, tt, n)

t « ((tspn)™ || tSan1..n) - ((etn)™ [[ttaa o)

return t
endfunction hsub s

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 213

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Horizontal Subtract HSUB_U.df
31 26 25 23 22 21 20 16 15 11 10 6 0
MSA 3R
011110 nur o df wt ws wd 010101
6 3 2 5 5 5 6
Format: HSUB U.df

HSUB U.H wd,ws,wt MSA
HSUB U.W wd,ws,wt MSA
HSUB U.D wd,ws,wt MSA

Purpose: Vector Unsigned Horizontal Subtract

Vector zero extend and pairwise subtract the even elements from the odd elements to double width elements

Description: (wd[2i+1], wd[2i]) <« unsigned(ws[2i+1]) - unsigned(wt[2i])

The zero-extended odd elements in vector wt are subtracted from the zero-extended even elements in vector ws pro-

ducing a signed result twice the size of the input operands. The result is written to vector wd.

The operands are values in integer data format half the size of df. The results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
HSUB U.H
for i in 0 .. WRLEN/16-1
WR [wdl 163415, 161 < hsub_u(WRIwsSljgi,is. 161/ WRIWEl1gi,15. 1610 8)
endfor
HSUB U.W
for i in 0 .. WRLEN/32-1
WR [wdl3zi,31. 321 < hsub_u(WRIwSlspi,31. 325, WRIWEl355,31 32i, 16)
endfor
HSUB U.D
for i in 0 .. WRLEN/64-1
WR [wdl 643163, 641 ¢ hsub_u(WRIwSlgsire3. 62ir WRIWElgsii63. 641/ 32)
endfor
function hsub u(ts, tt, n)
£« (0" || tsono1.m) - (07 || tepq o)
return t
endfunction hsub u
Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 214

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Interleave Even ILVEV.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 110 of wt ws wd 010100
6 3 2 5 5 5 6

Format: ILVEV.df

ILVEV.B wd,ws,wt MSA
ILVEV.H wd,ws,wt MSA
ILVEV.W wd,ws,wt MSA
ILVEV.D wd,ws,wt MSA

Purpose: Vector Interleave Even

Vector even elements interleave.

Description: wd [21] « wt[2i]; wd[2i+1] « ws[2i]

Even elements in vectorsws andwt are copied to vector wd aternating one element fromws with one element
from wt.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
ILVEV.B
for i in 0 .. WRLEN/16-1
J o« 2 * i
k<« 2 *1i+1
WR[wdlgj,7. .85 ¢ WRIWtlgs,7 g5
WR [wd] gi,7. gx < WR[ws] 8j+7..83
endfor
ILVEV.H
for i in 0 .. WRLEN/32-1
j o« 2 * i
k<« 2 *1i+1
WR [wd] 169+15..169 < WR[Wt]16j+15..16j
WR [wd] 161415, . 16x < WRIWS] 169,15 165
endfor
ILVEV.W
for i in 0 .. WRLEN/64-1
j o« 2 * i
ke«2*1i+1
WR [Wd]32j+31,,32j <~ WR[Wt]32j+31..32j
WR [wdl 30k431. .32k ¢ WRIWSI339,31. 325
endfor
ILVEV.D
for i in 0 .. WRLEN/128-1
j o« 2 * i
k« 2 * 1+ 1
WR[wdl 645463, 645 < WRIWE]g49,63. 645
WR [wdl g4x463. .64k < WRIWSlg49.63. 643
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 215

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endfor

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 216

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Interleave Left ILVL.df
31 26 25 23 22 21 20 16 15 11 10 0
MSA 3R
011110 100 | df wt ws wd 010100
6 3 2 5 5 5 6
Format: ILVL.df
ILVL.B wd,ws,wt MSA
ILVL.H wd,ws,wt MSA
ILVL.W wd,ws,wt MSA
ILVL.D wd,ws,wt MSA

Purpose: Vector Interleave L eft

Vector |eft elements interleave.

Description: wd [21] « left_half (wt) [i]; wd[2i+1] « left_half (ws) [i]

Theleft half elementsin vectors ws and wt are copied to vector wd alternating one element from ws with one element

from wt.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ILVL.B
for i in 0
j o« 2 * i
k<« 2 *1i+1

WRLEN/16-1

WR[wdlgj,7. .85 ¢ WRIWE]gi,7,wrLEN/2. . 8i+WRLEN/2
WR[wd] gy,7. gk < WR—“"S]si+7+WRLEN/2..si+WRLEN/2

endfor

ILVL.H
for i in 0
jo«— 2 * i
k<« 2 *1i+1

WRLEN/32-1

WR [wd] 164415..165 ¢ WRIWE]165,15,mwrEN/2.
WR [wdl 16x415. .16k ¢ WRIWS]16i,154urnEN/2.

endfor

ILVL.W
for i in 0
j o« 2 * i
k<« 2 *1i+1

WRLEN/64-1

WR [wd] 354431..329 < WRIWEI 355,31 wriEN/2.
WR [wd] 301431, .32k < WRIWSI35i,314wREN/2.

endfor

ILVL.D
for i in 0
j o« 2 * i
k<« 2 *1i+1

WRLEN/128-1

WR WAl 644463..6a7 < WRIWEIgai,63+wRrLEN/2.
WR [wd] 641463, .6ax < WRIWS]gaii634mrLEN/2.

.161i+WRLEN/2
.161i+WRLEN/2

.321i+WRLEN/2
.321+WRLEN/2

.641+WRLEN/2
.641i+WRLEN/2

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

217

endfor

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 218

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Interleave Odd ILVOD.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 1l of wt ws wd 010100
6 3 2 5 5 5 6

Format: 1ILVOD.df

ILVOD.B wd,ws,wt MSA
ILVOD.H wd,ws,wt MSA
ILVOD.W wd,ws,wt MSA
ILVOD.D wd,ws,wt MSA

Purpose: Vector Interleave Odd

Vector odd elements interleave.

Description: wd [21] <« wt[2i+1]; wd[2i+1] « ws[2i+1]

Odd elements in vectorsws and wt are copied to vector wd aternating one element fromws with one element
from wt.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
ILVOD.B
for i in 0 .. WRLEN/16-1
j o2 % i
k<« 2 *1i+1
WR[wd]gq,7. .85 < WRIWElgr, 7 gk
WR [wdl gyc,7. g = WRIWS]gri7 gk
endfor
ILVOD.H
for i in 0 .. WRLEN/32-1
jo«— 2 * i
k<2 * 1 + 1
WR [wd] 164415..165 < WRIWE] 16,15, 16k
WR [wd] 161415, .16% ¢ WRIWS] 16415, 16k
endfor
ILVOD.W
for i in 0 .. WRLEN/64-1
j o« 2 * i
k« 2 * 1+ 1
WRwd] 354431, .329 < WRIWE] 35,31 32k
WR [wd] 30431, .32k < WRIWSI3opk,31. .32k
endfor
ILVOD.D
for i in 0 .. WRLEN/128-1
j e 2 % i
k<« 2 *1i+1
WR WAl ga4463..6a5 < WRIWE]gaxi63. 64k
WR [wd] 64463, .64k < WRIWS]gaxi63. 64k
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 219

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endfor

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 220

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Interleave Right ILVR.df
31 26 25 23 22 21 20 16 15 11 10 0
MSA 3R
011110 01 | df wt ws wd 010100
6 3 2 5 5 5 6
Format: ILVR.d4f
ILVR.B wd,ws,wt MSA
ILVR.H wd,ws,wt MSA
ILVR.W wd,ws,wt MSA
ILVR.D wd,ws,wt MSA

Purpose: Vector Interleave Right

Vector right elements interleave.

Description: wd [21] <« right_half (wt) [i]; wd[2i+1] <« right_half (ws) [i]

The right half elements in vectors ws and wt are copied to vector wd alternating one element from ws with one ele-

ment from wt.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
ILVR.B
for i in 0 .. WRLEN/16-1
j o2 % i
k<« 2 *1i+1
WR[wdlgq,7. .85 ¢ WRIWtlgi,7 g1
WR[wdlgx,7. gk < WRIWSlgi,7 g1
endfor
ILVR.H
for i in 0 .. WRLEN/32-1
jo«— 2 * i
k<« 2 *1i+1
WR [wd] 164415..165 ¢ WRIWt] 165,15 161
WR [wd] 161415, . 16x < WRIWS] 165,15 161
endfor
ILVR.W
for i in 0 .. WRLEN/64-1
j o« 2 * i
k« 2 * 1+ 1
WR [wd] 354431, .329 < WRIWEI35i,31. 321
WR [wd] 301431, .32k < WRIWSI3pi431. 321
endfor
ILVR.D
for i in 0 .. WRLEN/128-1

J e 2 %1
k« 2 * 1+ 1

WR WAl 644463..647 < WRIWElgaii63. 6ai
WR [wd] 641463, .6ax < WRIWSlgaii63. 641

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

221

endfor

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 222

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

GPR Insert Element

INSERT.df

31 26 25 22 21 16 15 11 10 0
MSA ELM
011110 0100 df/n rs wd 011001

6 4 6 5 5 6
Format: INSERT.df

INSERT.B wd[n],rs
INSERT.H wd[n],rs
INSERT.W wd[n],rs

Purpose: GPR Insert Element

GPR value copied to vector element.

Description: wd [n] « rs

MSA
MSA
MSA

Set element n in vector wd to GPR rs value. All other elements in vector wd are unchanged. If the source GPR is
wider than the destination data format, the destination's elements will be set to the least significant bits of the GPR.

The operands and results are values in data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

INSERT.B
WR [wd] gn,7. .gn ¢ GPRI[rsl,

INSERT.H

WR[wd]l 16n415. .16n < GPRIrslis. o

INSERT.W

WR [wd] 33n431..32n ¢ GPRIrsls; o

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 223

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Element Insert Element INSVE.df

31 26 25 22 21 16 15 11 10 6 5
MSA ELM
011110 0101 df/n ws wd 011001

6 4 6 5 5 6

Format: INSVE.df
INSVE.B wd[n],ws[0]
INSVE.H wd[n],ws[0]
INSVE.W wd[n],ws[0]
INSVE.D wd[n],ws[0]

Purpose: Element Insert Element

Element value copied to vector element.

Description: wd [n] « ws[0]

Set element n in vector wd to element 0 in vector ws value. All other elementsin vector wd are unchanged.

The operands and results are values in data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

INSVE.B
WR [wd] gn,7. .gn < WR[ws],

INSVE.H
WR[wd]l16n415. .16n < WRIWS]i5 o

INSVE.W
WR [wd] 350431, 320 ¢ WRIwslsp o

INSVE.D
WR [wdl g4n463..6an < WRIWSlg3 o

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSA
MSA
MSA
MSA

224

Vector Load LD.df

31 26 25 16 15 11 10 6 5 2 1 0
MSA MI10
011110 s10 rs wd 1000 df
6 10 5 5 4 2

Format: 1D.df

ILD.B wd,sl1l0(rs) MSA
LD.H wd,sl1l0(rs) MSA
LD.W wd,sl1l0(rs) MSA
ILD.D wd,sl1l0(rs) MSA

Purpose: Vector Load
Vector load element-by-element from base register plus offset memory address,

Description: wd [i] <« memoryl[rs + (s10 + i) * sizeof (wd[i])]

The WRLEN / 8 bytes at the effective memory location addressed by the base rs and the 10-bit signed immediate
offset s10 are fetched and placed in wd as elements of dataformat df.

The s10 offset in dataformat df unitsis added to the base rs to form the effective memory location address. rs and the
effective memory location address have no alignment restrictions.

If the effective memory location address is element aligned, the vector load instruction is atomic at the element level
with no guaranteed ordering among elements, i.e. each element load is an atomic operation issued in no particular
order with respect to the element's vector position.

By convention, in the assembly language syntax al offsets are in bytes and have to be multiple of the size of the data
format df. The assembler determines the s10 bitfield value dividing the byte offset by the size of the data format df.

Restrictions:

Address-dependent exceptions are possible.

Operation:

LD.B
a <« rs + s10
LoadByteVector (WR [wd] yrren-1. .0 &, WRLEN/S)

LD.H
a <« rs + sl0 * 2
LoadHalfwordvector (WR[wd] ygren-1..0/ &, WRLEN/16)

LD.W
a <« rs + 810 * 4
LoadWordVector (WR [wd] yrien-1. .0r @&, WRLEN/32)

LD.D
a < rs + sl10 * 8
LoadDoublewordvVector (WR [wd] yrren-1..0, @, WRLEN/64)

function LoadByteVector (ts, a, n)
/* Implementation defined load ts vector of n bytes from virtual
address a. */
endfunction LoadByteVector

function LoadHalfwordVector(ts, a, n)
/* Implementation defined load ts vector of n halfwords from

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 225

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Load LD.df

virtual address a. */
endfunction LoadHalfwordVector

function LoadWordVector (ts, a, n)

/* Implementation defined load ts vector of n words from virtual
address a. */
endfunction LoadWordVector

function LoadDoublewordVector (ts, a, n)
/* Implementation defined load ts vector of n doublewords from
virtual address a. */
endfunction LoadDoublewordVector

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception. Data access TLB and Address Error Exceptions.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 226

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Load LDI.df

31 26 25 23 22 21 20 11 10 6 5 0
MSA 110
011110 110 df s10 wd 000111
6 3 2 10 5 6

Format: 1DI.df

LDI.B wd,sl0 MSA
ILDI.H wd,sl0 MSA
ILDI.W wd,sl0 MSA
ILDI.D wd,sl0 MSA

Purpose: Immediate Load
Immediate value replicated across all destination elements.

Description: wd[i] « s10

The signed immediate s10 is replicated in all wd elements. For byte elements, only the least significant 8 bits of s10
will be used.

Restrictions:

No data-dependent exceptions are possible.

Operation:
LDI.B
t <« s1045
for i in 0 .. WRLEN/8-1
WR([wd]gi,7. gi < €
endfor
LDI.H
t <« (8104)% || s104 o
for i in 0 .. WRLEN/16-1
WR[wd] 165415..161 < t
endfor
LDI.W
t « (8104)22 || 8104 ,
for i in 0 .. WRLEN/32-1
WR[wd]l355431..3210 < t
endfor
LDI.D
t « (8104)°* || s104 o
for i in 0 .. WRLEN/64-1
WR[wdlgsi463.. 641 < t
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 227

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Left Shift Add LSA
31 26 25 21 20 16 15 11 10 0
SPECIAL LSA
000000 rs t rd 000 000101
6 5 5 5 3 6
Format: 1sa
LSA rd,rs,rt,sa MSA

Purpose: Left Shift Add

To left-shift aword by a fixed number of bits and add the result to another word.

Description: GPR [rd] « (GPR[rs] << (sa + 1)) + GPR[rt]

The 32-bit word value in GPR rs is shifted left, inserting zeros into the emptied bits; the 32-bit word result is added to
the 32-bit value in GPR rt and the 32-bit arithmetic result is sign-extended and placed into GPR rd.

No Integer Overflow exception occurs under any circumstances.

Restrictions:

A Reserved Instruction Exceptionis signaled if MSA implementation is not present.

If GPR rt does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the operation is UNPRE-

DICTABLE.

Operation:

if NotWordValue (GPR[rt]) then
UNPREDICTABLE

endif

if Config3ygap = 1 then
S ¢« sa + 1

temp « (GPRIrsl 31.¢)..0 || 0°) + GPRIrt]
GPR[rd] <« sign_extend (temp3i..o)
else
SignalException (ReservedInstruction)
endif
Exceptions:

Reserved Instruction Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

228

Vector Fixed-Point Multiply and Add

MADD_Q.df

31 26 25 22 21 20 16 15 11 10 0
MSA 3RF
011110 0101 | df wt ws wd 011100
6 4 1 5 5 5 6

Format: MaADD Q.df
MADD Q.H wd,ws,wt
MADD Q.W wd,ws,wt

Purpose: Vector Fixed-Point Multiply and Add
Vector fixed-point multiply and add.

Description: wd[i] « saturate (wd[i] + ws[i] * wt[i])

MSA
MSA

The products of fixed-point elements in vector wt by fixed-point elements in vector ws are added to the fixed-point
elements in vector wd. The multiplication result is not saturated, i.e. exact (-1) * (-1) = 1 is added to the destination.

The saturated fixed-point results are stored back to wd.

Internally, the multiplication and addition operate on data double the size of df. Truncation to fixed-point data

format df is performed at the very last stage, after saturation.
The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MADD Q.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415, .161 €

g_madd (WR [wd] 161,15, 161, WRIWSIigii15. .161r WRIWEl 145,15, 161, 16)

endfor

MADD Q.W
for i in 0 .. WRLEN/32-1
WR [wdl 351431, .321 ¢

g_madd (WR [wd] 351,31, 321, WRIWSI3ni.31. 32i, WRIWED355,31. 325, 32)

endfor

function mulx s(ts, tt, n)
S < (tsnfl)n | | tSnfl..O
t <« (ttn)™ || ttaq o
p<«< s *t
return pyn_ 1. .o
endfunction mulx_s

function sat_s(tt, n, b)

if tt, , = 0 and tt, ; ., # 0Pl then
return PP+ || 1Pt

endif

if tty,; = 1 and tt,; p.q # 1°°°*1 then
return 177P*1 || oP-!

else
return tt

endif

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 229

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endfunction sat_s

function g _madd(td, ts, tt, n)
p < mulx s(ts, tt, n)
d « (tdyy || tdpg o |1 0™ + panoa. o
d <« sat_s(dyn.1. . pn-1, N+l, n)
return d,_ 1 ¢
endfunction g_madd

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 230

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Fixed-Point Multiply and Add Rounded MADDR_Q.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1101 fdf wt ws wd 011100
6 4 1 5 5 5 6

Format: MADDR Q.df
MADDR_Q.H wd,ws,wt MSA
MADDR Q.W wd,ws,wt MSA

Purpose: Vector Fixed-Point Multiply and Add Rounded
Vector fixed-point multiply and add rounded.

Description: wd[i] « saturate (round(wd[i] + ws[i] * wt[i]))

The products of fixed-point elements in vector wt by fixed-point elements in vector ws are added to the fixed-point
elements in vector wd. The multiplication result is not saturated, i.e. exact (-1) * (-1) = 1 is added to the destination.
The rounded and saturated fixed-point results are stored back to wd.

Internally, the multiplication, addition, and rounding operate on data double the size of df. Truncation to fixed-point
dataformat df is performed at the very last stage, after saturation.

Therounding is done by adding 1 to the most significant bit that is going to be discarded at truncation.
The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MADDR Q.H
for i in 0 .. WRLEN/16-1
WR (WAl 163415, 161 <
q_maddr (WR [wdlqgi 15, 161, WRIWSligii15. 161/ WRIWEDi16i415. 161/ 16)
endfor

MADDR Q.W
for i in 0 .. WRLEN/32-1
WR [wdl 351431, .321 ¢
g_maddr (WR [wdlspi,31. .32i0 WRIWSI32i431. 320, WRIWEI3p3i,31 325, 32)
endfor

function mulx s(ts, tt, n)
s « (tsy)" || tspg o
£« (tty)"] ttaa o
P < s * ¢t
return Pop-i. .0

endfunction mulx s

function sat_s(tt, n, b)
if tt,, = 0 and tt, ; p.; # 0°P* then

return PP+ || 1Pt

endif

if tty,; = 1 and tt,; p.q # 1°°*1 then
return 177P*1 || oP-!

else

return tt

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 231

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endif
endfunction sat_s

function g maddr(td, ts, tt, n)
p « mulx s(ts, tt, n)
d « (tdyy || tdng o |1 0%79) + pono1 o
d« d+ (1]] 0?2
d « sat_s(dy,_q. . p.1, D+1, n)
return d,_ 1. o
endfunction g maddr

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 232

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Multiply and Add MADDV.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 001 of wt ws wd 010010
6 3 2 5 5 5 6

Format: MADDV.df

MADDV.B wd,ws,wt MSA
MADDV.H wd,ws,wt MSA
MADDV.W wd,ws,wt MSA
MADDV.D wd,ws,wt MSA

Purpose: Vector Multiply and Add
Vector multiply and add.

Description: wd [1] « wd[i] + ws[i] * wt[i]

Theinteger elementsin vector wt are multiplied by integer elementsin vector ws and added to the integer elementsin
vector wd. The most significant half of the multiplication result is discarded.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MADDV.B
for i in 0 .. WRLEN/8-1
WR[wdlgi,y, g1 <
WR([wdlgi,y, gi + WRIwSlgi,7 g3 * WRIWElgi,9 g1
endfor
MADDV.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415, 161 ¢
WR([wd]l 161415, .161 + WRIWS] 165415, 161 * WRIWE] 1465415, 161
endfor
MADDV.W
for i in 0 .. WRLEN/32-1
WR [wdl 351431, .321 ¢
WR[wd] 355431, .321 + WRIWS]325431. 321 * WRIWED 325431, 321
endfor
MADDV.D
for i in 0 .. WRLEN/64-1
WR [wdl 641463, 621 €
WR WAl ggi463..641 + WRIWSlgai463. 641 * WRIWElGai463. 641
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 233

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Maximum Based on Absolute Values

MAX_A.df

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 110 of wt ws wd 001110
6 3 2 5 5 5 6

Format: MAX A.d4f
MAX A.B wd,ws,wt
MAX A.H wd,ws,wt
MAX A.W wd,ws,wt
MAX A.D wd,ws,wt

Purpose: Vector Maximum Based on Absolute Values

Vector and vector maximum based on the absol ute val ues.

Description: wd[i] « absolute value(ws[i]) > absolute value(wt[i])? ws[i]: wt[i]

MSA
MSA
MSA
MSA

The value with the largest magnitude, i.e. absolute value, between corresponding signed elements in vector ws and

vector wt are written to vector wd.
The minimum negative val ue representabl e has the largest absolute value.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

8)

Operation:
MAX A.B
for i in 0 .. WRLEN/8-1
WR [Wd] 8i+7..81 <« maX_a(WR[WS]8i+7..8i, WR[Wt] 8i+7 - .8i,
endfor
MAX A.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415, 161 ¢ Max_a(WRIwSligii15. 161, WRIWE]l 145,15 161, 16)
endfor
MAX A.W
for i in 0 .. WRLEN/32-1
WR[wd] 351431, .321 ¢ max_a(WRIwslspiia1. 32i, WRIWED3pi,31. 321, 32)
endfor
MAX A.D
for i in 0 .. WRLEN/64-1

WR (WAl gai463.. 621 ¢ Max_a(WRIwslgaie3. . 62ir WRIWE]gai,i63. 641/ 64)

endfor

function abs(tt, n)
if tt,; = 1 then
return -tt, ; 4
else
return tt, ; o
endif
endfunction abs

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

234

function max a(ts, tt, n)
t < 0 || abs(tt, n)
s « 0 || abs(ts, n)
if t < s then
return ts
else
return tt
endif
endfunction max_a

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 235

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Maximum

MAX_S.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 010 of wt ws wd 001110
6 3 2 5 5 5 6

Format: MaxX s.df

MAX S.B wd,ws,wt
MAX S.H wd,ws,wt
MAX S.W wd,ws,wt
MAX S.D wd,ws,wt

Purpose: Vector Signed Maximum

Vector and vector signed maximum.

Description: wd [i] « max(ws[i], wt[i])

MSA
MSA
MSA
MSA

Maximum values between signed elements in vector wt and signed elements in vector ws are written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MAX_S.B
for i in 0 .. WRLEN/8-1
WR[wd]g;,7. g1 ¢ max_s(WR[wslgi,7 gi, WR[wtlg;,;..81,
endfor
MAX S.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ Max_s (WRIwWSI 6315, 161, WRIWE] 165,15, 161:
endfor
MAX S.W
for i in 0 .. WRLEN/32-1
WR [wd] 354,31, 321 ¢ max_s(WRIwslspi,31. 321, WRIWED35i,31. 3210
endfor
MAX S.D
for i in 0 .. WRLEN/64-1
WR[wdlgsi463. 641 ¢ Max_s (WRIWSlegie3. . 641 WRIWEIgai,63. 6ais
endfor

function max_s(ts, tt, n)
t « ttp; || tt
s « tsp; || ts
if t < s then
return ts
else
return tt
endif
endfunction max s

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

236

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 237

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Maximum

MAX_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 o1l of wt ws wd 001110
6 3 2 5 5 5 6

Format: Max U.df
MAX U.B wd,ws,wt
MAX U.H wd,ws,wt
MAX U.W wd,ws,wt
MAX U.D wd,ws,wt

Purpose: Vector Unsigned Maximum

Vector and vector unsigned maximum.

Description: wd [i] « max(ws[i], wt[i])

MSA
MSA
MSA
MSA

Maximum values between unsigned elements in vector wt and unsigned elements in vector ws are written to

vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MAX U.B
for i in 0 .. WRLEN/8-1
WR([wd]g;,7. g1 ¢ max u(WR[wslgi,7 gi, WR[wtlgi,;..81, 8)
endfor
MAX U.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415, .161 ¢ Max_u(WRIwSligiii15. . 161, WRIWE] 165,15, 161, 16)
endfor
MAX U.W
for i in 0 .. WRLEN/32-1
WR [wd] 355,31, .321 ¢ max_u(WRIwslspii31. 321, WRIWED355,31. 325, 32)
endfor
MAX U.D
for i in 0 .. WRLEN/64-1
WR[wdlgsi463. 641 ¢ Max U (WRIWSlggi,63. 641/ WRIWEIgai,63. 621, 64)
endfor

function max u(ts, tt, n)
t « 0 || tt
s «< 0 || ts
if t < s then
return ts
else
return tt
endif
endfunction max_u

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

238

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 239

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Signed Maximum MAXI_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA I5
011110 010 of 5 ws wd 000110
6 3 2 5 5 5 6

Format: MAXI s.df

MAXI S.B wd,ws,s5 MSA
MAXT S.H wd,ws,s5 MSA
MAXT S.W wd,ws,s5 MSA
MAXI S.D wd,ws,s5 MSA

Purpose: Immediate Signed Maximum

Immediate and vector signed maximum.

Description: wd [i] « max(ws[i], s5)
Maximum values between signed elements in vector ws and the 5-bit signed immediate s5 are written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MAXI_S.B
t « (s54)% || s5, o
for i in 0 .. WRLEN/8-1
WR([wdlgi,7, gi < max s (WR[wslgj,; gi, t, 8)
endfor
MAXI S.H
t « (85 || s5,
for i in 0 .. WRLEN/16-1
WR[wd] 61415, 161 ¢ Max_s (WR[wS] 6515, 1610 £, 16)
endfor
MAXI S.W
t « (85,27 || s5,
for i in 0 .. WRLEN/32-1
WR[wdl3pi431..32: ¢ max_ s (WR[wsSlipirzr, .32i0 E, 32)
endfor
MAXI_S.D
t « (85,)°7 || s5,
for i in 0 .. WRLEN/64-1
WR[wdlgsi463. .61 ¢ Max_s (WR[wSlggii63. 641/ E, 64)
endfor

function max_s(ts, tt, n)
t « tty, || tt
s « tsy, || ts
if t < s then
return ts
else
return tt

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 240

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endif
endfunction max_ s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 241

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Unsigned Maximum MAXI_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA I5
011110 o1l of us ws wd 000110
6 3 2 5 5 5 6

Format: MAXI U.df

MAXI U.B wd,ws,u5 MSA
MAXI U.H wd,ws,ub MSA
MAXI U.W wd,ws,ub MSA
MAXI U.D wd,ws,u5 MSA

Purpose: Immediate Unsigned Maximum

Immediate and vector unsigned maximum.

Description: wa [i] « max(ws[i], u5)

Maximum values between unsigned elements in vector ws and the 5-bit unsigned immediateu5 are written to
vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MAXI U.B
t « 0% || us, o
for i in 0 .. WRLEN/8-1
WR([wdlgj,7, gi < max u(WR[wslgj,; gi, t, 8)
endfor
MAXI U.H
t « o' || us, ,
for i in 0 .. WRLEN/16-1
WR([wd] 161415, 161 ¢ max_u(WR[wsligi,is, 16i, £, 16)
endfor
MAXI U.W
t « 027 || us, ,
for i in 0 .. WRLEN/32-1
WR [wdl 351431, .321 ¢ max_u(WRIwslspiiar, 32i, E, 32)
endfor
MAXI U.D
t « 0°° || us, ,
for i in 0 .. WRLEN/64-1
WR[wdlggi463..641 ¢ Max_u(WRIwslgaiie3. 6air T, 64)
endfor

function max u(ts, tt, n)
t « 0 || tt
s« 0 || ts
if t < s then
return ts
else

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 242

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

return tt
endif
endfunction max u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 243

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Minimum Based on Absolute Value

MIN_A.df

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 1l of wt ws wd 001110
6 3 2 5 5 5 6

Format: MIN A.4f
MIN A.B wd,ws,wt
MIN A.H wd,ws,wt
MIN A.W wd,ws,wt
MIN A.D wd,ws,wt

Purpose: Vector Minimum Based on Absolute Value

Vector and vector minimum based on the absolute values.

Description: wd[i] « absolute value(ws[i]) < absolute value(wt[i])? ws[i]: wt[i]

MSA
MSA
MSA
MSA

The value with the smallest magnitude, i.e. absolute value, between corresponding signed elements in vector ws and

vector wt are written to vector wd.

The minimum negative val ue representabl e has the largest absolute value.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MIN A.B
for i in 0 .. WRLEN/8-1
WR [wdlgi,7. gy ¢ min_a(WR[wslgi,7 i
endfor
MIN A.H
for i in 0 .. WRLEN/16-1
WR[wdligi415. 161 ¢ min_a(WR[wsligi,15
endfor
MIN A.W
for 1 in 0 .. WRLEN/32-1
WR [wdl3zi431. 321 < min_a(WRIwslzpj,3
endfor
MIN A.D
for 1 in 0 .. WRLEN/64-1

WR (WAl gqis63. 641 < Min_a(WRIwslegii63

endfor

function min_a(ts, tt, n)
t « 0 || abs(tt, n)
s < 0 || abs(ts, n)
if t > s then
return ts
else
return tt
endif

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

WR([wtlg;,,..81, 8)

..16is WRIWtI 63,15 161, 16)

o320 WRIWEI3pi.31. 321, 32)

..6ais WRIWtlgaiie3. a1, 64)

244

endfunction min_a

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 245

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Minimum

MIN_S.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 100 of wt ws wd 001110
6 3 2 5 5 5 6

Format: MIN s.df

MIN_S.B wd,ws,wt
MIN S.H wd,ws,wt
MIN S.W wd,ws,wt
MIN S.D wd,ws,wt

Purpose: Vector Signed Minimum

Vector and vector signed minimum.

Description: wd[i] « min(ws[i], wt[i])

MSA
MSA
MSA
MSA

Minimum values between signed elementsin vector wt and signed elements in vector ws are written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MIN S.B
for i in 0 .. WRLEN/8-1
WR [Wd] 8i+7..81 <« mln_s (WR [WS] 8i+7..81ir WR [Wt] 81i+7 - - 81,
endfor
MIN S.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415, .161 ¢ min_s(WRIwSI 63,15, 161, WRIWE] 165,15, 161:
endfor
MIN S.W
for i in 0 .. WRLEN/32-1
WR[wd] 355431, 321 ¢ min_s(WRIwslszi,31. 321, WRIWED35i,31. 3210
endfor
MIN S.D
for i in 0 .. WRLEN/64-1
WR (WAl 641463, 641 ¢ Min_s(WRIwSlgaii63. .62ir WRIWE]gaii63. 6air
endfor

function min_s(ts, tt, n)
t « ttp; || tt
s « tsp; || ts
if t > s then
return ts
else
return tt
endif
endfunction min_s

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

246

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 247

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Minimum

MIN_U.df

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 101 of wt ws wd 001110
6 3 2 5 5 5 6

Format: MIN U.df
MIN U.B wd,ws,wt
MIN U.H wd,ws,wt
MIN U.W wd,ws,wt
MIN U.D wd,ws,wt

Purpose: Vector Unsigned Minimum

Vector and vector unsigned minimum.

Description: wd[i] « min(ws[i], wt[i])

MSA
MSA
MSA
MSA

Minimum values between unsigned elements in vector wt and unsigned elements in vector ws are written to

vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MIN U.B
for i in 0 .. WRLEN/8-1
WR [Wd] 8i+7..81 <« mln_u(WR [WS] 8i+7..81ir WR [Wt] 81i+7 - - 81, 8)
endfor
MIN U.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415, .161 ¢ Min_u(WRIwSligii15. . 161, WRIWE] 165,15, 161, 16)
endfor
MIN U.W
for i in 0 .. WRLEN/32-1
WR[wd] 355,31, .321 ¢ min_u(WRIwslspi,31. 321, WRIWE]355,31. 325, 32)
endfor
MIN U.D
for i in 0 .. WRLEN/64-1
WR (WAl 641463, 641 ¢ Min_u(WRIwSlgaii63. . 62ir WRIWE]gai,63. 645/ 64)
endfor

function min u(ts, tt, n)
t « 0 || tt
s «< 0 || ts
if t > s then
return ts
else
return tt
endif
endfunction min u

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

248

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 249

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Signed Minimum MINI_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA I5
011110 100 of 5 ws wd 000110
6 3 2 5 5 5 6

Format: MINI s.df

MINI_S.B wd,ws,s5 MSA
MINI S.H wd,ws,s5 MSA
MINI S.W wd,ws,s5 MSA
MINI_S.D wd,ws,s5 MSA

Purpose: Immediate Signed Minimum

Immediate and vector signed minimum.

Description: wd [i] « min(ws[i], s5)
Minimum values between signed elementsin vector ws and the 5-hit signed immediate s5 are written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MINI_S.B
t « (s54)% || s5, o
for i in 0 .. WRLEN/8-1
WR[wdlgi,7 gi ¢ min s (WR[wslgi,7 gi, t, 8)
endfor
MINI_S.H
t « (85 || s5,
for i in 0 .. WRLEN/16-1
WR[wd] 163415, .161 ¢ min_s(WR[wSligi,15. 161, &/ 16)
endfor
MINI_S.W
t « (85,27 || s5,
for i in 0 .. WRLEN/32-1
WR[wdl3pi431. 326 ¢ min_ s (WR[wSl3pi31. . 32i0 £, 32)
endfor
MINI_S.D
t « (85,)°7 || s5,
for i in 0 .. WRLEN/64-1
WR[wdlgsi463. .61 < Min_s (WR[wSlggii63. 641/ E, 64)
endfor

function min s(ts, tt, n)
t « tty, || tt
s « tsy, || ts
if t > s then
return ts
else
return tt

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 250

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endif
endfunction min_s

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 251

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Unsigned Minimum

MINI_U.df

31 26 25 23 22 21 20 16 15 11 10
MSA I5
011110 101 of us ws wd 000110
6 3 2 5 5 5 6

Format: MINI U.df
MINI U.B wd,ws,u5
MINI U.H wd,ws,u5
MINI U.W wd,ws,u5
MINI U.D wd,ws,u5

Purpose: Immediate Unsigned Minimum

Immediate and vector unsigned minimum.

Description: wd[i] « min(ws[i]l, u5)

MSA
MSA
MSA
MSA

Minimum values between unsigned elements in vector ws and the 5-bit unsigned immediate u5 are written to

vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MINI_U.B
t « 0° |
for i in

endfor
MINI U.H

t «
for i in

Oll

| us,. o

0 .. WRLEN/8-1
WR[wdlgi,7, g1 ¢« min_u(WR[wsSlgj,7 .gi.

|| u54. o

0 .. WRLEN/16-1

WR [wdl 165415, 161 ¢ min u(WR[wS]i6i,15. 1650 C.

endfor

MINI _U.W
t «
for i in

027

|| u54. o

0 .. WRLEN/32-1

WR [wdl 355431, .321 ¢ min_u(WRIwslspiia1. 321

endfor

MINI_U.D
t «
for i in

059

endfor

|| u54. o

0 .. WRLEN/64-1
WR[wdlgai463. 621 ¢ Mmin_u(WR[wslgsiies

function min u(ts, tt,

t « 0 ||
s «< 0 ||
if t > s

tt
ts
then

return ts

else

n)

..641r

t,

16)

32)

64)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

252

return tt
endif
endfunction min_u

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 253

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Modulo MOD_S.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 110 of wt ws wd 010010
6 3 2 5 5 5 6

Format: MoD s.df

MOD_S.B wd,ws,wt MSA
MOD S.H wd,ws,wt MSA
MOD S.W wd,ws,wt MSA
MOD_S.D wd,ws,wt MSA

Purpose: Vector Signed Modulo

Vector signed remainder (modulo).

Description: wd [i] « ws[i] mod wt[i]

The signed integer elements in vector ws are divided by signed integer elements in vector wt. The remainder of the
same sign as the dividend is written to vector wd. If a divisor element vector wt is zero, the result value is UNPRE-
DICTABLE.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MOD_S.B
for i in 0 .. WRLEN/8-1
WR([wdlgi,7 gi < WRIwslgj,7 gi mod WR[wtlgi,7 g
endfor
MOD_S.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ WRIWS]igi,15. 161 MOd WRIWE] 145,15, 161
endfor
MOD S.W
for i in 0 .. WRLEN/32-1
WR[wd] 355431, .321 ¢ WRIwWSl355,31. 325 mod WRIwt]ljzni,31. 321
endfor
MOD_S.D
for i in 0 .. WRLEN/64-1
WR[wdlgsi463. 641 ¢ WRIWSlggi,63. 641 MOd WRIWElG4i.63. 641
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 254

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Modulo

MOD_U.df

31 26 25 23 22 21 16 15 11 10 6 5
MSA 3R
011110 1l of wt ws wd 010010
6 3 2 5 5 5

Format: MoD U.df
MOD _U.B wd,ws,wt
MOD U.H wd,ws,wt
MOD U.W wd,ws,wt
MOD U.D wd,ws,wt

Purpose: Vector Unsigned Modulo

Vector unsigned remainder (modul0).

Description: wd[i] « ws[i] umod wt [i]

MSA
MSA
MSA
MSA

The unsigned integer elements in vector ws are divided by unsigned integer elements in vector wt. The remainder is

written to vector wd. If adivisor e ement vector wt is zero, the result valueis UNPREDICTABLE.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MOD_U.B
for i in 0 .. WRLEN/8-1
WR[wdlgi,7, gi < WRIwWSlgi,; g3 umod WRIwtlgi,; g1
endfor
MOD U.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415..161 ¢ WRIWS] 165,415, 161 umod WRIwt]ig:i,15 161
endfor
MOD U.W
for i in 0 .. WRLEN/32-1
WR[wd] 355431, .321 ¢ WRIWS]35i,31. 325 umod WRIwtlssi,31. 321
endfor
MOD_U.D
for i in 0 .. WRLEN/64-1
WR[Wdl 641463, 641 ¢ WRIWSlgaii63. 645 umod WRIwtlgasiie3. 6ai
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

255

Vector Move

31 26 25 16 15 11 10
MSA ELM
011110 0010111110 ws wd 011001
6 10 5 5 6

Format: MOVE.vV
MOVE.V wd, ws

Purpose: Vector Move

Vector to vector move.

Description: wd « ws
Copy al WRLEN hitsin vector ws to vector wd.
The operand and result are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

WR [wd] <« WRI[ws]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MOVE.V

MSA

256

Vector Fixed-Point Multiply and Subtract MSUB_Q.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0110 | df wt ws wd 011100
6 4 1 5 5 5 6

Format: MSUB 0.df
MSUB_Q.H wd,ws,wt MSA
MSUB Q.W wd,ws,wt MSA

Purpose: Vector Fixed-Point Multiply and Subtract
Vector fixed-point multiply and subtract.

Description: wd[i] « saturate (wd[i] - ws[i] * wt[i])

The product of fixed-point elements in vector wt by fixed-point elements in vector ws are subtracted from the fixed-
point elements in vector wd. The multiplication result is not saturated, i.e. exact (-1) * (-1) = 1 is subtracted from the
destination. The saturated fixed-point results are stored back to wd.

Internally, the multiplication and subtraction operate on data double the size of df. Truncation to fixed-point data
format df is performed at the very last stage, after saturation.

The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MSUB_Q.H
for i in 0 .. WRLEN/16-1
WR [wdl 161415, 161 <
g_msub (WR [wd] 161,15, 161, WRIWSIigi.i15. 161, WRIWEl 145,15, 161, 16)
endfor

MSUB_Q.W
for i in 0 .. WRLEN/32-1
WR [wdl3zi431. 321 ¢
q_msub (WR [wd] 353,31, 321, WRIWSl32i,31. 325, WRIWEl355,31 321, 32)
endfor

function mulx s(ts, tt, n)
S < (tsnfl)n | | tSnfl..O
t <« (ttn)™ || ttaq o
p<«< s *t
return pyn_ 1. .o
endfunction mulx_s

function sat_s(tt, n, b)

if tt, , = 0 and tt, ; ., # 0Pl then
return PP+ || 1Pt

endif

if tty,; = 1 and tt,; p.q # 1°°°*1 then
return 177P*1 || oP-!

else
return tt

endif

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 257

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endfunction sat_s

function g _msub(td, ts, tt, n)
p < mulx s(ts, tt, n)
d « (tdyy || tdpg o |1 0"Y) - pang. o
d <« sat_s(dyn.1. . pn-1, N+l, n)
return d,_ 1 ¢
endfunction g _msub

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 258

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Fixed-Point Multiply and Subtract Rounded MSUBR_Q.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1m0 fdf wt ws wd 011100
6 4 1 5 5 5 6

Format: MSUBR Q.df
MSUBR_Q.H wd,ws,wt MSA
MSUBR_Q.W wd,ws,wt MSA

Purpose: Vector Fixed-Point Multiply and Subtract Rounded
Vector fixed-point multiply and subtract rounded.

Description: wd[i] « saturate(round(wd[i] - ws[i] * wt[i]))

The products of fixed-point elementsin vector wt by fixed-point elements in vector ws are subtracted from the fixed-
point elements in vector wd. The multiplication result is not saturated, i.e. exact (-1) * (-1) = 1 is subtracted from the
destination. The rounded and saturated fixed-point results are stored back to wd.

Internally, the multiplication, subtraction, and rounding operate on data double the size of df. Truncation to fixed-
point data format df is performed at the very last stage, after saturation.

Therounding is done by adding 1 to the most significant bit that is going to be discarded at truncation.
The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MSUBR _Q.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415, 161 ¢

g_msubr (WR [wdl 145,15, 161+ WRIWS]i6i415. 161, WRIWE] 165,15 165, 16)
endfor

MSUBR Q.W
for i in 0 .. WRLEN/32-1
WR [wdl3zi431. 321 ¢
q_msubr (WR [wdl 333,31, 321, WRIWSI32i431. 320, WRIWED32i431. 324, 32)
endfor

function mulx s(ts, tt, n)
s « (tsy)" || tspg o
£« (tty)"] ttaa o
P < s * ¢t
return Pop-i. .0

endfunction mulx s

function sat_s(tt, n, b)
if tt,, = 0 and tt, ; p.; # 0°P* then

return PP+ || 1Pt

endif

if tty,; = 1 and tt,; p.q # 1°°*1 then
return 177P*1 || oP-!

else

return tt

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 259

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

endif
endfunction sat_s

function g msubr(td, ts, tt, n)
p « mulx s(ts, tt, n)
d « (tdyy || tdng o |1 0%79) - pono1 o
d« d+ (1]] 0?2
d « sat_s(dy,_q. . p.1, D+1, n)
return d,_ 1. o
endfunction g msubr

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 260

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Multiply and Subtract MSUBV.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 010 of wt ws wd 010010
6 3 2 5 5 5 6

Format: MSUBV.df

MSUBV.B wd, ws,wt MSA
MSUBV.H wd,ws,wt MSA
MSUBV.W wd,ws,wt MSA
MSUBV.D wd,ws,wt MSA

Purpose: Vector Multiply and Subtract
Vector multiply and subtract.

Description: wd [i] « wd[i] - ws[i] * wt[i]

Theinteger elementsin vector wt are multiplied by integer elementsin vector ws and subtracted from the integer ele-
ments in vector wd. The most significant half of the multiplication result is discarded.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

MSUBV.B
for i in 0 .. WRLEN/8-1
WR[wdlgi,7 gi <
WR([wdlgi,7, gi - WRIwSlgj,7 g3 * WRIWElgi,9 g3
endfor

MSUBV.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415, 161 ¢

WR[wd]l 161415, .161 - WRIWS] 163415, 161 ¥ WRIWE] 1465415, 161
endfor

MSUBV.W
for i in 0 .. WRLEN/32-1
WR [wdl 351431, .321 ¢

WR[wdl 355431, .3210 - WRIWSI32i431. 321 ¥ WRIWED 325431, 321
endfor

MSUBV.D
for i in 0 .. WRLEN/64-1
WR [wdl 641463, 621 €

WR WAl 641463, 641 - WRIWSlgai463. 641 * WRIWElGai463. 641
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 261

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Fixed-Point Multiply

MUL_Q.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 0100 | df wt ws wd 011100
6 4 1 5 5 5 6

Format: MuL_0.df
MUL Q.H wd,ws,wt
MUL Q.W wd,ws,wt

Purpose: Vector Fixed-Point Multiply
Vector fixed-point multiplication.

Description: wd [i] « ws[i] * wt[i]

MSA
MSA

The fixed-point elements in vector wt multiplied by fixed-point elements in vector ws. The result is written to

vector wd.

Fixed-point multiplication for 16-bit Q15 and 32-hit Q31 is aregular signed multiplication followed by one bit shift

left with saturation. Only the most significant half of the result is preserved.
The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MUL Q.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415, .161 ¢ 9_mul (WRIWSI16i 15 161, WRIWE] 145,15, 161, 16)
endfor
MUL Q.W
for i in 0 .. WRLEN/32-1
WR[wWd] 355,31, .321 ¢ g _mul (WRIwSI35i,31 321, WRIWED355,37. 325, 32)
endfor

function mulx s(ts, tt, n)
S < (tsn—l)n || t:Sn—l..O
£ <« (ttn—l)n || ttn—l..O
p < s * t
return pyn-1. .0

endfunction mulx s

function g mul(ts, tt, n)

if ts =1 || 0™? and tt = 1 || 0®! then
return 0 || 177!
else

p < mulx_s(ts, tt, n)
return Pon-z..n-1
endif
endfunction g mul

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 262

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Fixed-Point Multiply Rounded MULR_Q.df

31 26 25 22 21 20 16 15 11 10 6 5 0
MSA 3RF
011110 1100 fdf wt ws wd 011100
6 4 1 5 5 5 6

Format: MULR Q.df
MULR_Q.H wd,ws,wt MSA
MULR Q.W wd,ws,wt MSA
Purpose: Vector Fixed-Point Multiply Rounded

Vector fixed-point multiply rounded.

Description: wd[i] « round(ws[i] * wt[i])

The fixed-point elements in vector wt multiplied by fixed-point elements in vector ws. The rounded result is written
to vector wd.

Fixed-point multiplication for 16-bit Q15 and 32-hit Q31 is aregular signed multiplication followed by one bit shift
left with saturation. Only the most significant half of the result is preserved.

The rounding is done by adding 1 to the most significant bit that is going to be discarded prior to shifting left the full
multiplication result.

The operands and results are values in fixed-point data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MULR_Q.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415, .161 ¢ g _mulr (WRIwS] 65,15 161, WRIWEI 163,15, 161, 16)
endfor
MULR_Q.W
for i in 0 .. WRLEN/32-1
WR[wd] 351431..321 ¢ g _mulr (WRIwWS]355,31. 320, WRIWEIs5i,31. 321, 32)
endfor

function mulx s(ts, tt, n)
S < (tsn—l)n || tSn—l..O
£« (ttnfl)r1 || ttnfl..O
p <« s *t
return poh.1. .9

endfunction mulx s

function g mulr(ts, tt, n)

if ts =1 || 0™? and tt = 1 || 0®! then
return 0 || 177!

else
p < mulx_s(ts, tt, n)
p < p+ (1] 0"?

return p2n—2 ..n-1
endfunction g mulr

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 263

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 264

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Multiply MULV.df
31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 000 | df wt ws wd 010010
6 3 2 5 5 5 6

Format: MULv.df
MULV.B wd,ws,wt
MULV.H wd,ws,wt
MULV.W wd,ws,wt
MULV.D wd,ws,wt
Purpose: Vector Multiply

Vector multiply.

Description: wd[i] <« ws[i] * wt[i]

The integer elements in vector wt are multiplied by integer elements in vector ws.
The most significant half of the multiplication result is discarded.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
MULV.B
for i in 0 .. WRLEN/8-1
WR[wdlgi,7, gi < WRIWSlgi,g g3 * WRIWElgi,7 g1
endfor
MULV.H
for i in 0 .. WRLEN/16-1
WR WAl 161415, 161 ¢ WRIWS]igi,15. 161 * WRIWEI 165415, 161
endfor
MULV.W
for i in 0 .. WRLEN/32-1
WR[wd] 355,31, .321 ¢ WRIwWSl355,31. 321 * WRIwtlsni,31. 321
endfor
MULV.D
for i in 0 .. WRLEN/64-1
WR WAl gai463..6a1 ¢ WRIWSlgaii63. 641 * WRIWEIgaii63. 641
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MSA
MSA
MSA
MSA

The result is written to vector wd.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

265

Vector Leading Ones Count

31 26 25 18 17 16 15 11 10 6 5
MSA 2R
011110 11000010 df ws wd 011110
6 8 2 5 5 6

Format: NLOC.df
NLOC.B wd,ws
NLOC.H wd,ws
NLOC.W wd,ws
NLOC.D wd,ws
Purpose: Vector Leading Ones Count

Vector element count of leading bits set to 1.

Description: wd[i] « leading one count (ws[i])
The number of leading ones for elementsin vector ws is stored to the elements in vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
NLOC.B
for i in 0 .. WRLEN/8-1
WR[wd] g;,7. . gi ¢ leading one count (WR[wslgi,7 .gi, 8)
endfor
NLOC.H
for 1 in 0 .. WRLEN/1l6-1
WR[wd] 5i,15. 161 ¢ leading one_count (WR([ws]igi, 15, . 161, 16)
endfor
NLOC.W
for i in 0 .. WRLEN/32-1
WR[wd]lssi,31. 321 ¢ leading one_ count (WR([ws]3si,31. 321, 32)
endfor
NLOC.D
for i in 0 .. WRLEN/64-1
WRIwd] g4i.63. 641 < leading one_count (WR[wslgsi,i63. . 641/ 64)
endfor

function leading one_ count (tt, n)
z < 0
for i in n-1..0
if tt; = 0 then
return z
else
zZ < z + 1
endif
endfunction leading one count

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

NLOC.df

MSA
MSA
MSA
MSA

266

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 267

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Leading Zeros Count NLZC.df

31 26 25 18 17 16 15 11 10 6 5 0
MSA 2R
011110 11000011 df ws wd 011110

6 8 2 5 5 6

Format: NLZzC.df

NLZC.B wd,ws MSA
NLZC.H wd,ws MSA
NLZC.W wd,ws MSA
NLZC.D wd,ws MSA

Purpose: Vector Leading Zeros Count
Vector element count of leading bits set to O.

Description: wd[i] « leading zero count (ws[i])
The number of leading zeroes for elementsin vector ws is stored to the elementsin vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
NLZC.B
for i in 0 .. WRLEN/8-1
WR([wd]g;,7. g1 ¢ leading zero count (WR[ws]lgi,7;. g1, 8)
endfor
NLZC.H
for 1 in 0 .. WRLEN/1l6-1
WR[wd] 6i,15. 161 < leading zero_count (WRI[ws]ligi,15. 161/ 16)
endfor
NLZC.W
for i in 0 .. WRLEN/32-1
WR[wd] 353,31, .32i ¢ leading zero count (WRI[wsli3si,31. 321/ 32)
endfor
NLZC.D
for i in 0 .. WRLEN/64-1
WR[wd] g4i,63. 641 ¢ leading zero count (WRI[wslgsi,63. 641/ 6%4)
endfor

function leading zero_count (tt, n)
z < 0
for i in n-1..0
if tt; = 1 then
return z
else
zZ < z + 1
endif
endfunction leading zero count

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 268

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 269

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Logical Negated Or NOR.V

31 26 25 21 20 16 15 11 10 6 5 0
MSA VEC
011110 00010 wt ws wd 011110
6 5 5 5 5 6

Format: NOR.V

NOR.V wd,ws,wt MSA
Purpose: Vector Logical Negated Or
Vector by vector logical negated or.

Description: wd « ws NOR wt

Each bit of vector ws is combined with the corresponding bit of vector wt in a bitwise logical NOR operation. The
result is written to vector wd.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

WR [wd] <« WR[ws] nor WR[wt]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 270

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Logical Negated Or NORI.B

31 26 25 24 23 16 15 11 10 6 5 0
MSA . 18
011110 10 18 ws wd 000000
6 2 8 5 5 6

Format: NORI.B

NORI.B wd,ws,i8 MSA
Purpose: Immediate Logical Negated Or
Immediate by vector logical negated or.

Description: wd[i] <« ws[i] NOR i8

Each byte element of vector ws is combined with the 8-bit immediate i8 in a bitwise logical NOR operation. The
result is written to vector wd.

The operands and results are values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:
for i in 0 .. WRLEN/8-1
WR[wdlgj,7. .gi < WR[wslgj,7..81 nor 18,
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 271

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Logical Or

31 26 25 21 20 16 15 11 10
MSA VEC
011110 00001 wt ws wd 011110
6 5 5 5 5 6

Format: ORrR.V
OR.V wd,ws,wt

Purpose: Vector Logical Or
Vector by vector logical or.

Description: wd « ws OR wt

OR.V

MSA

Each bit of vector ws is combined with the corresponding bit of vector wt in a bitwise logical OR operation. The

result is written to vector wd.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

WR[wd] <« WR[ws] or WRI[wt]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

272

Immediate Logical Or ORIL.B

31 26 25 24 23 16 15 11 10 6 5 0
MSA . 18
011110 01 18 ws wd 000000
6 2 8 5 5 6

Format: ORI.B

ORI.B wd,ws, 18 MSA
Purpose: Immediate Logical Or
Immediate by vector logical or.

Description: wd[i] <« ws[i] OR 1i8

Each byte element of vector ws is combined with the 8-bit immediate i8 in a bitwise logical OR operation. The result
iswritten to vector wd.

The operands and results are values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:
for i in 0 .. WRLEN/8-1
WR[Wd] 8i+7..81 <« WR[WS]8i+7..8i or i87..0
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 273

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Pack Even PCKEV.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 010 of wt ws wd 010100
6 3 2 5 5 5 6

Format: PCKEV.df

PCKEV.B wd,ws,wt MSA
PCKEV.H wd,ws,wt MSA
PCKEV.W wd,ws,wt MSA
PCKEV.D wd,ws,wt MSA

Purpose: Vector Pack Even

Vector even elements copy.

Description: left_half (wd) [1] <« ws[2i]; right_half(wd) [i] « wt[2i]

Even elements in vector ws are copied to the left half of vector wd and even elements in vector wt are copied to the
right half of vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
PCKEV.B
for i in 0 .. WRLEN/16-1
j o« 2 * i
WR [wd] g3, 7.urLEN/2. .8i+wrLEN/2 < WRIWSlgy,7. g3
WR[wdlgi,7, g1 ¢ WRIWtlgs,7. g5
endfor
PCKEV.H
for i in 0 .. WRLEN/32-1
j o« 2 * i
WR-h”d]161+15+WRLEN/2..16j+WRLEN/2 <« WR-D”S]16j+15..16j
WR[wdl 161415, 161 ¢ WRIWE] 165,15, 163
endfor
PCKEV.W
for i in 0 .. WRLEN/64-1
j o« 2 * i
WR [wdl 351 ,314wRLEN/2. .325+wRLEN/2 < WRIWSI324.31. 324
WR [wWd] 355,31, .321 ¢ WRIWE]355,31. 325
endfor
PCKEV.D
for i in 0 .. WRLEN/128-1
j o« 2 * i
WR [wd] 64 463+wrLEN/2. .64 +wrLEN/2 < WRIWSI 45,63 645
WR[Wdl 641463, 621 ¢ WRIWE] 645463, 645
endfor
MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 274

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 275

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Pack Odd PCKOD.df
31 26 25 23 22 21 20 16 15 11 10 0
MSA 3R
011110 0L o wt ws wd 010100
6 3 2 5 5 5 6
Format: PCKOD.df
PCKOD.B wd,ws,wt MSA
PCKOD.H wd,ws,wt MSA
PCKOD.W wd,ws,wt MSA
PCKOD.D wd,ws,wt MSA

Purpose: Vector Pack Odd
Vector odd elements copy.

Description: left half (wd) [1] <« ws[2i+1]; right half (wd) [1] <« wt[2i+1]

Odd elementsin vector ws are copied to the left half of vector wd and odd elementsin vector wt are copied to the right
half of vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

PCKOD.B
for 1 in 0 WRLEN/16-1
k« 2 * 1+ 1
WR [wdl g3 ,7.wrpEN/2. . si+wriEN/2 < WRIWSlgr,7 gk
WR([wdlgi,7, gi < WRIWtlge,7 ex
endfor

PCKOD.H
for i in 0 WRLEN/32-1
k<2 * 1 + 1
WR [wd] 161 15wrLEN/2. . 161+wrLEN/2 < WRIWSIigri15. 16k
WR [wd] 161415..161 ¢ WRIWE]16x415. 16k
endfor

PCKOD.W
for 1 in 0 WRLEN/64-1
k<« 2 *1i+1
WR [Wd] 351 ,314wRLEN/2. .32i+wRLEN/2 < WRIWSI3on,31. 32k
WR[wd]3ni431. 321 ¢ WRIWtlsok,s1. .32k
endfor

PCKOD.D
for 1 in 0 WRLEN/128-1
k<2 * 1 + 1
WR [wd] 641 463+wrLEN/2. .641+wRLEN/2 < WRIWSIgay.63. 62k
WR[wdlgai463..621 ¢ WRIWE]gaxi63. 64k
endfor

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 276

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 277

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Population Count PCNT.df

31 26 25 18 17 16 15 11 10 6 5 0
MSA 2R
011110 11000001 df ws wd 011110

6 8 2 5 5 6

Format: PCNT.df

PCNT.B wd, ws MSA
PCNT.H wd, ws MSA
PCNT.W wd, ws MSA
PCNT.D wd, ws MSA

Purpose: Vector Population Count
Vector element count of all bits set to 1.

Description: wd[i] « population count (ws[il])
The number of hits set to 1 for elementsin vector ws is stored to the elementsin vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
PCNT.B
for i in 0 .. WRLEN/8-1
WR[wd] g;,7. . gi ¢ population count (WR([wslg;,7 gi, 8)
endfor
PCNT.H
for i in 0 .. WRLEN/16-1
WR[wd] 145415, 161 ¢ Population count (WRI[ws]igi,15. . 161+ 16)
endfor
PCNT.W
for i in 0 .. WRLEN/32-1
WR [wd] 555431, 321 < Ppopulation count (WRI[wslizsi,31..321/ 32)
endfor
PCNT.D
for i in 0 .. WRLEN/64-1
WRI[wd] g4i,63. 641 < Population count (WR[wsl¢si,ez. .6ais 64)
endfor

function population_count (tt, n)
z < 0
for i in n-1..0
if tt; = 1 then
Z < z + 1
endif
endfunction population_ count

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 278

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Signed Saturate SAT_S.df
31 26 25 23 22 16 15 11 10 0
MSA BIT
011110 000 df/m ws wd 001010
6 3 7 5 5 6
Format: sSAT s.df
SAT S.B wd,ws,m MSA
SAT S.H wd,ws,m MSA
SAT S.W wd,ws,m MSA
SAT S.D wd,ws,m MSA

Purpose: Immediate Signed Saturate
Immediate selected bit width saturation of signed values.

Description: wd[i] « saturate signed(ws[i], m+1)

Signed elementsin vector ws are saturated to signed values of m+1 bitswithout changing the datawidth. Theresultis

written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SAT S.B
for i in 0

WR[wd]gi,7. gi ¢ sat_s(WR[wslgi,7 .gis

endfor

SAT S.H
for i in 0

WR [wdl 163415, 161 < Sat_s (WRIwsligi,15

endfor

SAT S.W
for i in 0

WR [wdl 333,31, 321 < sat_s(WRIwslzpj,3;

endfor

SAT S.D
for i in 0

WR [wdl g4i163. 641 ¢ Sat_s (WR[wSlgaj,63

endfor

WRLEN/8-1

WRLEN/16-1

WRLEN/32-1

WRLEN/64-1

function sat_s(tt, n, b)
if tty,, = 0 and tt, ; p.; # 0°P* then

return 0™P*1 || 1P-1

endif

if tt, , = 1 and tty, ; ., # 1°P*! then
return 177P*1 || oP-L

else
return tt

endif

endfunction sat_s

8,

..l6dir

..3210

..6417

m+1)

16,

32,

64,

m+1)

m+1)

m+1)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

279

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 280

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Unsigned Saturate

SAT_U.df

31 26 25 23 22 16 15 11 10
MSA BIT
011110 001 f/m ws wd 001010
6 3 7 5 5 6
Format: saAT U.df
SAT U.B wd,ws,m
SAT U.H wd,ws,m
SAT U.W wd,ws,m
SAT U.D wd,ws,m

Purpose: |mmediate Unsigned Saturate
Immediate selected bit width saturation of unsigned values.

Description: wd[i] « saturate unsigned(ws[i], m+1)

MSA
MSA
MSA
MSA

Unsigned elements in vector ws are saturated to unsigned values of m+1 bits without changing the data width. The
result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SAT U.B
for i in

endfor

SAT U.H

for i in 0

endfor

SAT U.W

for i in 0

endfor

SAT U.D

for i in 0

endfor

function sat_u(tt, n, b)
if tty; p # 0°° then
return 0™ || 1P

else

0 .. WRLEN/8-1
WR[Wd] 81i+7..81 <« sat_u(WR[ws]8i+7__8i, 8,

return tt

endif

endfunction sat_u

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

WRLEN/16-1
WR [wdl 163415, 161 < Sat_u(WRIwsligi,gs

WRLEN/32-1
WR [wd]l 333,31, 321 ¢ sat_u(WRIwslzpj,3

WRLEN/64-1
WR [wdl 643163, 641 ¢ Sat_u(WR[wSlgaj,63

..l6dir

..3210

..6417

m+1)

16,

32,

64,

m+1)

m+1)

m+1)

281

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 282

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Set Shuffle Elements SHF.df
26 25 24 23 16 15 0
MSA . 18
011110 df 18 ws 000010
6 2 8 5 6
Format: SHF.df
SHF.B wd,ws, 18 MSA
SHF.H wd,ws,i8 MSA
SHF.W wd,ws,i8 MSA

Purpose: Immediate Set Shuffle Elements
Immediate control value-based 4 element set copy

Description: wd[i] « shuffle set(ws, i, 1i8)

The set shuffle instruction works on 4-element sets in df data format. All sets are shuffled in the same way: the

element 8541 5 inws is copied over the element i inwd, wherei is0, 1, 2, 3.

The operands and results are values in byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SHF.B
for i in 0 .. WRLEN/8-1
j o« 1% 4

k« 1 -3 + 1834,1. .25
WR [wd] 8i+7..81 < WR [ws] 8k+7..8k
endfor

SHF.H
for i in 0 .. WRLEN/16-1
j o« 1% 4
k« 1 -3 + 1834,1. .24

WR[wdligi415. 161 ¢ WRIWSIigxi15. .16k

endfor

SHF . W
for i in 0 .. WRLEN/32-1
j o« 1% 4
k < 1 - J + 183441, 25

WR[wdl3ni431. 321 ¢ WRIWSI3ary31. .32k

endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

283

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

GPR Columns Slide SLD.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 000 of t ws wd 010100
6 3 2 5 5 5 6

Format: sSLD.df

SLD.B wd,ws [rt] MSA
SLD.H wd,ws [rt] MSA
SLD.W wd,ws [rt] MSA
SLD.D wd,ws[rt] MSA

Purpose: GPR Columns Slide

GPR number of columnsto slide left source array.

Description: wa[i] « slide(wd, ws, rt)

Vector registerswd and ws contain 2-dimensiona byte arrays (rectangles) stored row-wise, with as many rows as
bytesin integer data format df.

The dide instructions manipulate the content of vector registers wd and ws as byte elements, with dataformat df indi-
cating the 2-dimensional byte array layout.

The two source rectangles wd and ws are concatenated horizontally in the order they appear in the syntax, i.e. first wd
and then ws. Place anew destination rectangle over ws and then slideit to the left over the concatenation of wd and ws
by the number of columns given in GPR rt. The result is written to vector wd.

GPR rt value is interpreted modulo the number of columns in destination rectangle, or equivalently, the number of
dataformat df elementsin the destination vector.
Restrictions:

No data-dependent exceptions are possible.

Operation:
SLD.B
n « GPR[rt] % (WRLEN/S)
v ¢ WR[wd] || WRI[ws]
for i in 0 .. WRLEN/8-1

j«< 1i+n
WRIwdlgi,y. g1 < Vaqg+7..89
endfor

SLD.H
n < GPR[rt] % (WRLEN/16)
s <« WRLEN/2
for k in 0, 1

t =8 * k
v « (WRIwdli,g1..c || WRIWSliig1. &)
for i in 0 .. s/8-1

j <« i+ n
WR [wd] t+8i+47..t+81 € Vgj+7. .83
endfor
endfor

SLD.W
n < GPR[rt] % (WRLEN/32)
S <« WRLEN/4

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 284

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

for k in 0, .., 3

t =8 *k
v « (WRIwAlt,g1..¢ || WRIWSl g1, &)
for i in 0 .. s/8-1

j«< 1i+n
WRIWAl ¢t gi7. te8i < Vaj+7..85
endfor
endfor

SLD.D
n < GPR[rt] % (WRLEN/64)
s < WRLEN/8
for k in 0, .., 7

t =8 *k
v « (WRIwAlt,g.1..¢ || WRIWSI g1, &)
for 1 in 0 .. s/8-1

j < 1i+n
WRIWA] 18547, . ce81 < Vaj+7..85
endfor
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 285

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSA
MSA
MSA

Immediate Columns Slide SLDI.df
31 26 25 22 21 16 15 11 10
MSA ELM
011110 0000 df/n ws wd 011001
6 4 6 5 5 6
Format: SLDI.df
SLDI.B wd,ws [n]
SLDI.H wd,ws [n]
SLDI.W wd, ws [n]
SLDI.D wd,ws [n]

Purpose: Immediate Columns Slide

Immediate number of columns to slide left source array.

Description: wd[i] « slide(wd, ws, n)

MSA

Vector registerswd and ws contain 2-dimensiona byte arrays (rectangles) stored row-wise, with as many rows as

bytesin integer data

format df.

The dide instructions manipulate the content of vector registers wd and ws as byte elements, with dataformat df indi-
cating the 2-dimensional byte array layout.

The two source rectangles wd and ws are concatenated horizontally in the order they appear in the syntax, i.e. first wd
and then ws. Place anew destination rectangle over ws and then slideit to the left over the concatenation of wd and ws

by n columns. The result iswritten to vector wd.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SLDI.B
Vv < WRI[w
for i in

dl || WRI[ws]
0 .. WRLEN/8-1

j <« 1i+n

WR[wdlgi,7. .81 < Vgg47..85

endfor

SLDI.H
s < WRLE
for k in
t =8

v « (WRIwdl,g1..¢ || WRIWSI¢, g1,

for i
J

N/2
0, 1
* k

in 0

< i1+ n

J

WR WAl 45547, . te8i € Vgi+7..87
endfor

endfor

SLDI.W
s <« WRLE
for k in
t =8

v« (WR[wdlp,gq ¢ | WRIWS]¢ goq

for i

j < i+ n

N/4
0, ..,
* k

in 0

3

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

286

WR WAl 48547, .cegi < Vej+7..83
endfor
endfor

SLDI.D
s <« WRLEN/8
for k in 0, .., 7

t =8 *k
v « (WRIwAlt,g.1..¢ || WRIWSI g1, &)
for 1 in 0 .. s/8-1

j < 1i+n
WRIWA] 18547, . ce81 < Vaj+7..85
endfor
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 287

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Shift Left

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 000 of wt ws wd 001101
6 3 2 5 5 5 6

Format: sSLL.df

SLL.B wd,ws,wt
SLL.H wd,ws,wt
SLL.W wd,ws,wt
SLL.D wd,ws,wt

Purpose: Vector Shift Left
Vector bit count shift left.

Description: wa [i] « ws[i] << wt[i]

SLL.df

MSA
MSA
MSA
MSA

The elements in vector ws are shifted left by the number of bits the elementsin vector wt specify modulo the size of

the element in bits. The result is written to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SLL.B
for i in 0 .. WRLEN/8-1
t < WRIwtlgi,n g3
WR[wd] gi,7 g < WRIwSlgi,g ¢ 1 g1 || OF
endfor

SLL.H
for i in 0 .. WRLEN/16-1
t < WRIwtli6is3. 161
WR[wd] 165,415, 161 « WRIWS]igii16-c-1. 161 || OF
endfor

SLL.W
for i in 0 .. WRLEN/32-1
€« WRIWtl3zi,4. 321
WR[Wd] 355,31, 321 ¢ WRIWSl3pi,35¢o1. 325 || OF
endfor

SLL.D
for i in 0 .. WRLEN/64-1
€« WRIwWtlgqiss. 621
WR [wd] 641463, 621 < WRIWS]gaii6a-t-1. 6ai || OF
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

288

Immediate Shift Left

31 26 25 23 22 16 15 11 10
MSA BIT
011110 000 df/m ws wd 001001
6 3 7 5 5 6

Format: SLLI.df

SLLI.B wd,ws,m
SLLI.H wd,ws,m
SLLI.W wd,ws,m
SLLI.D wd,ws,m

Purpose: Immediate Shift Left
Immediate bit count shift left.

Description: wd [i] « ws[i] << m

The elementsin vector ws are shifted left by m bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SLLI.B
t < m
for i in 0 .. WRLEN/8-1
t
WR[wdlgi,r. gi < WRIwSlgigeo1. .81 || O
endfor

SLLI.H
t < m
for i in 0 .. WRLEN/16-1

t
WR[wd] 65415, 165 ¢ WRIWSIigi416-t-1..161 || O
endfor

SLLI.W
t < m
for i in 0 .. WRLEN/32-1

t
WRwd]3z5431. .32 ¢ WRIWSI3pii30-¢-1..321 || O
endfor

SLLI.D
t < m
for i in 0 .. WRLEN/64-1

t
WR[wdlgais63. 641 ¢ WRIWSIgaiiga-t-1..621 || O
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SLLLdf

MSA
MSA
MSA
MSA

289

GPR Element Splat

SPLAT.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 001 of t ws wd 010100
6 3 2 5 5 5 6

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Format: SPLAT.df
SPLAT.B wd,ws [rt]
SPLAT.H wd,ws [rt]
SPLAT.W wd,ws [rt]
SPLAT.D wd,ws [rt]

Purpose: GPR Element Splat
GPR selected element replicated in all destination elements.

Description: wa[i] « ws[rt]

Replicate vector ws element with index given by GPR rt to al elementsin vector wd.

GPR rt valueisinterpreted modulo the number of dataformat df elementsin the destination vector.

The operands and results are values in data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SPLAT.B
n < GPR[rt] % (WRLEN/S8)
for i in 0 . WRLEN/8-1
WR [wd] 8i+7..81 € WR [ws] 8n+7..8n
endfor
SPLAT.H

n <« GPR[rt] % (WRLEN/16)

for i in 0 . WRLEN/16-1
WR [wd] 161415..161 ¢ WRIWS]igni15. .16n
endfor
SPLAT.W

n « GPR[rt] % (WRLEN/32)

for i in 0 . WRLEN/32-1
WR [wd] 351431, .321 ¢ WRIWS]3on,31. 32n
endfor
SPLAT.D
n < GPR[rt] % (WRLEN/64)
for i in 0 . WRLEN/64-1
WR[wdlgsi463. 641 ¢ WRIWSlgani63. . 64n
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSA
MSA
MSA
MSA

290

Immediate Element Splat

SPLATI.df

31 26 25 22 21 16 15 11 10
MSA ELM
011110 0001 df/n ws wd 011001
6 4 6 5 5 6

Format: SPLATI.df
SPLATI.B wd,ws [n]

SPLATI.H wd,ws [n]
SPLATI.W wd,ws [n]
SPLATI.D wd,ws [n]

Purpose: |mmediate Element Splat

Immediate selected element replicated in all destination elements.

Description: wd [i] <« ws[n]
Replicate element n in vector ws to al elementsin vector wd.
The operands and results are values in data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SPLATI.B
for i in 0 .. WRLEN/8-1
WR([wdlgi,7. g1 < WRIwSlgn,7 gn
endfor
SPLATI.H
for i in 0 .. WRLEN/16-1
WR[wdl 161415..161 < WRIWS]1gn.15. 16n
endfor
SPLATI.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ WRIWSI3opn,31. 320
endfor
SPLATI.D
for i in 0 .. WRLEN/64-1
WR [wdl 641463, .621 ¢ WRIWSlgani63. 6an
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSA
MSA
MSA
MSA

201

Vector Shift Right Arithmetic SRA.df
31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 01 | df wt ws wd 001101
6 3 2 5 5 5 6
Format: SrRA.df
SRA.B wd,ws,wt MSA
SRA.H wd,ws,wt MSA
SRA.W wd,ws,wt MSA
SRA.D wd,ws,wt MSA

Purpose: Vector Shift Right Arithmetic
Vector bit count shift right arithmetic.

Description: wa [i] « ws[i] >> wt[i]

The elements in vector ws are shifted right arithmetic by the number of bits the elementsin vector wt specify modulo

the size of the element in bits. The result is written to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRA.B
for 1 in 0 . WRLEN/8-1
t < WRIwtlgi,n g3
WR[wd] gi,7. g1 < (WRIwslgi,s)® || WRIwSlgi,g gi,c
endfor

SRA.H
for 1 in 0 . WRLEN/16-1
t < WRIwtli6is3. 161
WR[Wd] 165415, 161 < (WRIWS]1g1,15) " || WRIWS] 141415
endfor

SRA.W
for i1 in 0 . WRLEN/32-1
€« WRIWtl3zi,4. 321
WR[Wd] 355,31, 321 ¢ (WRIWSI354,31)% || WRIwS]3pi,3;
endfor

SRA.D
for i in 0 . WRLEN/64-1
€« WRIwWtlgqiss. 621
WR [wd]l 641463, 641 < (WRIWSlggi,63)" || WRIWS]g4s.63
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

.. 16i+t

..321i+t

..641+t

292

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Shift Right Arithmetic SRALdf

31 26 25 23 22 16 15 11 10 6 5 0
MSA BIT
011110 001 df/m ws wd 001001
6 3 7 5 5 6

Format: SRAI.d4f

SRAI.B wd,ws,m MSA
SRAI.H wd,ws,m MSA
SRAI.W wd,ws,m MSA
SRAI.D wd,ws,m MSA

Purpose: Immediate Shift Right Arithmetic
Immediate bit count shift right arithmetic.

Description: wd [i] « ws[i] >> m
The elements in vector ws are shifted right arithmetic by m bits. The result is written to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRAI.B
t < m
for i in 0 .. WRLEN/8-1
WR [wdl gy, g5 ¢ (WRIWSlgi,s)® || WRIWS]gius gise
endfor

SRAI.H
t < m
for i in 0 .. WRLEN/16-1

t
WR[wdl 65415, 161 < (WRIWSI1gi415) || WRIWSIigi415. 1654t
endfor

SRAI.W
t < m
for i in 0 .. WRLEN/32-1

t
WRIwd] 355,31, .32 ¢ (WRIWSI3pi431)° || WRIWSI3oi431. 3214t
endfor

SRAI.D
t < m
for i in 0 .. WRLEN/64-1

t
WR[wdlgais63. 641 < (WRIWSIgaise3) || WRIWSIgaises. 6aivt
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 293

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Shift Right Arithmetic Rounded

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 001 of wt ws wd 010101
6 3 2 5 5 5 6

Format: SRAR.df
SRAR.B wd,ws,wt
SRAR.H wd,ws,wt
SRAR.W wd,ws,wt
SRAR.D wd,ws,wt

Purpose: Vector Shift Right Arithmetic Rounded

Vector bit count shift right arithmetic with rounding

Description: wd [i] « ws[i] >>(rounded) wt[i]

SRAR.df

MSA
MSA
MSA
MSA

The elements in vector ws are shifted right arithmetic by the number of bits the elementsin vector wt specify modulo
the size of the element in bits. The most significant discarded bit is added to the shifted value (for rounding) and the

result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SRAR.B
for i in 0 .. WRLEN/8-1
WR([wd] g;,7. . gi ¢ srar (WR[wslgi,7 gis
endfor
SRAR.H
for i in 0 .. WRLEN/16-1
WR [wdl 163415, 161 < Srar (WR[wsligi,is
endfor
SRAR.W
for 1 in 0 .. WRLEN/32-1
WR [wdl 333431, 321 ¢ srar(WR[wslspi,a;
endfor
SRAR.D
for 1 in 0 .. WRLEN/64-1
WR [wdl 643163, 641 ¢ STar (WR[Wslgsi, 63
endfor

function srar(ts, n, b)
if n = 0 then
return ts
else

return ((tsy)" || tsp.1. n) + tspq

endif
endfunction srar

WRIWtlgiso gir 8)

.. 161 WRIWEIi6i.3. 161, 16)

o3240 WRIWEIsni.4. 325, 32)

c.6air WRIWEIgai.5 cais 64)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

294

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 295

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Shift Right Arithmetic Rounded SRARI.df

31 26 25 23 22 16 15 11 10 6 5 0
MSA BIT
011110 010 df/m ws wd 001010
6 3 7 5 5 6

Format: SRARI.df

SRARI.B wd,ws,m MSA
SRARI.H wd,ws,m MSA
SRARI.W wd,ws,m MSA
SRARI.D wd,ws,m MSA

Purpose: |mmediate Shift Right Arithmetic Rounded
Immediate bit count shift right arithmetic with rounding

Description: wd [i] « ws[i] >>(rounded) m

The elements in vector ws are shifted right arithmetic by m bits. The most significant discarded bit is added to the
shifted value (for rounding) and the result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SRARI.B
for i in 0 .. WRLEN/8-1
WR([wd]g;,7. gi ¢ srar(WR([wslgi,7 gi, m, 8)
endfor
SRARI.H
for i in 0 .. WRLEN/16-1
WR[wdl 1631415, 161 < srar (WR[wsligi,is 161, ™, 16)
endfor
SRARI.W
for 1 in 0 .. WRLEN/32-1
WR (WAl 333431, 321 ¢ srar (WR[wsljzpi,sr. 32is M, 32)
endfor
SRARI.D
for 1 in 0 .. WRLEN/64-1
WR (WAl ggi463. 641 ¢ STar (WRIwslggi,ez. eais M, 64)
endfor

function srar(ts, n, b)
if n = 0 then
return ts
else
return ((tsy)™ || tsp.1. o) + tspq
endif
endfunction srar

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 296

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 297

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Shift Right Logical

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 010 | o wt ws wd 001101
6 3 2 5 5 5 6
Format: SRL.df
SRL.B wd,ws,wt
SRL.H wd,ws,wt
SRL.W wd,ws,wt
SRL.D wd,ws,wt

Purpose: Vector Shift Right Logical
Vector bit count shift right logical.

Description: wa [i] « ws[i] >> wt[i]

SRL.df

MSA
MSA
MSA
MSA

The elementsin vector ws are shifted right logical by the number of bits the elements in vector wt specify modulo the

size of the element in bits. The result is written to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRL.B
for 1 in 0 . WRLEN/8-1
t < WRIwtlgi,n g3
WR[wd]gi,7 g1 < O° || WRIwSlgi,g gi,c
endfor

SRL.H
for 1 in 0 . WRLEN/16-1
t « WRIWtligi,3. 161

t
WRwd] 165415, 165 < O || WRIWSI1gi415. 1614t
endfor

SRL.W
for i1 in 0 . WRLEN/32-1
t « WRIWtl3pi,4. 321

t
WRIwd] 325431, .32 ¢ O || WRIWSI3oi431. 3244c
endfor

SRL.D
for i in 0 . WRLEN/64-1
€« WRIwWtlgqiss. 621
WR [wd]l 641463, 641 < (WRIWSlggi,63)" || WRIWS]g4s.63
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

..641+t

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

298

Immediate Shift Right Logical

31 26 25 23 22 16 15
MSA BIT
011110 010 df/m ws 001001
6 3 7 5 6

Format: SRLI.df

SRLI.B wd,ws,m
SRLI.H wd,ws,m
SRLI.W wd,ws,m
SRLI.D wd,ws,m

Purpose: Immediate Shift Right Logical
Immediate bit count shift right logical.

Description: wd [i] « ws[i] >> m

The elementsin vector ws are shifted right logical by m bits. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

SRLI.B
t < m
for i in 0 .. WRLEN/8-1
t
WR[wdlgi,r. g3 < 07 || WRIwslgiig gise
endfor

SRLI.H
t < m
for i in 0 .. WRLEN/16-1

t
WRwd] 65415, 165 < O || WRIWSIigi415. 1614t
endfor

SRLI.W
t < m
for i in 0 .. WRLEN/32-1

t
WRIwd] 325431, .32 ¢ O || WRIWSI3oiu31. 3244c
endfor

SRLI.D
t < m
for i in 0 .. WRLEN/64-1

t
WRwdlgaise3. 641 < O || WRIWSIgaisies. aist
endfor

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

SRLL.df

MSA
MSA
MSA
MSA

299

Vector Shift Right Logical Rounded SRLR.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA 3R
011110 010 of wt ws wd 010101
6 3 2 5 5 5 6

Format: SRLR.df

SRLR.B wd,ws,wt MSA
SRLR.H wd,ws,wt MSA
SRLR.W wd,ws,wt MSA
SRLR.D wd,ws,wt MSA

Purpose: Vector Shift Right Logical Rounded
Vector bit count shift right logical with rounding

Description: wd [i] « ws[i] >>(rounded) wt[i]

The elementsin vector ws are shifted right logical by the number of bits the elements in vector wt specify modulo the
size of the element in bits. The most significant discarded bit is added to the shifted value (for rounding) and the result
iswritten to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SRLR.B
for i in 0 .. WRLEN/8-1
WR([wdlgi,7 gi < Srlr(WR[wslgi,; gi, WRIWtlgi,o gy, 8)
endfor
SRLR.H
for i in 0 .. WRLEN/16-1
WR [wdl 161415, 161 < STIr(WRIwSligisis. 161 WRIWEDjgi43 161, 16)
endfor
SRLR.W
for 1 in 0 .. WRLEN/32-1
WR[wAl3z3,31. 321 ¢ STIr(WRIwsl3zi,31. 3200 WRIWED3n3.4 325, 32)
endfor
SRLR.D
for 1 in 0 .. WRLEN/64-1
WR[wdl 643163, 641 ¢ STLIr (WRIWSIgaii63. 64ir WRIWEl6aii5. 625, 64)
endfor

function srlr(ts, n, b)
if n = 0 then
return ts
else
return (0" || tsp.q1.) + tsp;
endif
endfunction srlr

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 300

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 301

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Shift Right Logical Rounded SRLRI.df
31 26 25 23 22 16 15 11 10 0
MSA BIT
011110 o1l df/m ws wd 001010
6 3 7 5 5 6
Format: SRLRI.df

SRLRI.B wd,ws,m MSA
SRLRI.H wd,ws,m MSA
SRLRI.W wd,ws,m MSA
SRLRI.D wd,ws,m MSA

Purpose: Immediate Shift Right Logical Rounded
Immediate bit count shift right logical with rounding

Description: wd [i] « ws[i] >>(rounded) m

The elementsin vector ws are shifted right logical by m bits. The most significant discarded bit is added to the shifted

value (for rounding) and the result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SRLRI.B
for i in 0 .. WRLEN/8-1
WR [Wd] 8i+7..81 « srlr (WR [WS] 81i+7..81
endfor
SRLRI.H
for i in 0 .. WRLEN/16-1
WR[wdl 163415, 161 < STIr(WR[wsligi,gs
endfor
SRLRI.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ srlr(WR[ws]jzai,3:
endfor
SRLRI.D
for i in 0 .. WRLEN/64-1
WR [wdl 643163, 641 ¢ STLr(WRWS]gsi,63
endfor

function srlr(ts, n, b)
if n = 0 then
return ts
else

return (0" || tsp.q1.) + tsp;

endif
endfunction srlr

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

..161is M, 16)

..321, M, 32)

. .6ais M, 64)

302

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 303

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Store ST.df

31 26 25 16 15 11 10 6 5 2 1 0
MSA MI10
011110 s10 rs wd 1001 df
6 10 5 5 4 2

Format: sT.df

ST.B wd,sl10(rs) MSA
ST.H wd,sl0(rs) MSA
ST.W wd,sl0(rs) MSA
ST.D wd,sl0(rs) MSA

Purpose: Vector Store
Vector store element-by-element to base register plus offset memory address.

Description: memory[rs + s10 + i * sizeof (wd[i])] « wdl[i]

The WRLEN / 8 bytesin vector wd are stored as elements of dataformat df at the effective memory location addressed
by the base rs and the 10-hit signed immediate offset s10.

The s10 offset in dataformat df unitsis added to the base rs to form the effective memory location address. rs and the
effective memory location address have no alignment restrictions.

If the effective memory location address is element aligned, the vector store instruction is atomic at the element level
with no guaranteed ordering among elements, i.e. each element store is an atomic operation issued in no particular
order with respect to the element's vector position.

By convention, in the assembly language syntax al offsets are in bytes and have to be multiple of the size of the data
format df. The assembler determines the s10 bitfield value dividing the byte offset by the size of the data format df.

Restrictions:

Address-dependent exceptions are possible.

Operation:

ST.B
a <« rs + s10
StoreByteVector (WR [wd] yrign-1. .0, &, WRLEN/8)

ST.H
a <« rs + 810 * 2
StoreHalfwordVector (WR [wd] yrien-1. .0 &, WRLEN/16)

ST.W
a <« rs + sl10 * 4
StoreWordVector (WR [wd] yrien-1. .0 &, WRLEN/32)

ST.D
a < rs + sl10 * 8
StoreDoublewordVector (WR [wd] yrren-1..0, @, WRLEN/64)

function StoreByteVector(tt, a, n)
/* Implementation defined store n byte vector tt to virtual
address a. */
endfunction StoreByteVector

function StoreHalfwordVector(tt, a, n)
/* Implementation defined store n halfword vector tt to virtual

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 304

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Store ST.df

address a. */
endfunction StoreHalfwordVector

function StoreWordVector (tt, a, n)

/* Implementation defined store n word vector tt to virtual
address a. */
endfunction StoreWordVector

function StoreDoublewordVector (tt, a, n)
/* Implementation defined store n doubleword vector tt to virtual
address a. */
endfunction StoreDoublewordVector

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception. Data access TLB and Address Error Exceptions.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 305

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Saturated Subtract of Signed Values

SUBS_S.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 000 of wt ws wd 010001
6 3 2 5 5 5 6

Format: SuBs _s.df

SUBS_S.B wd,ws,wt
SUBS S.H wd,ws,wt
SUBS S.W wd,ws,wt
SUBS S.D wd,ws,wt

Purpose: Vector Signed Saturated Subtract of Signed Values

Vector subtraction from vector saturating the result as signed value.

Description: wd[i] « saturate signed(signed(ws[i]) - signed(wt[i]))

MSA
MSA
MSA
MSA

The elements in vector wt are subtracted from the elements in vector ws. Signed arithmetic is performed and over-

flows clamp to the largest and/or smallest representable signed values before writing the result to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SUBS_S.B
for i in 0 .. WRLEN/8-1
WR([wdlgi,7 gi < subs_s(WR[wslgi,7 gi, WRIWtlgi,s gi,
endfor
SUBS_S.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ subs_s(WRI[wS] 65,15 161, WRIWEI 161,15, 161+
endfor
SUBS_S.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ subs_s(WRI[wS]3pi,31. 321, WRIWEI35i,31. 301
endfor
SUBS_S.D
for i in 0 .. WRLEN/64-1

WR[wd] 641463, 641 ¢ subs_s(WRI[wSlgsi,63. 6a1r WRIWEIgaii63. 621

endfor

function sat_s(tt, n, b)
if tty,, = 0 and tt, ; p.; # 0°P* then

return 0™P*1 || 1P-1

endif

if tt, , = 1 and tty, ; ., # 1°P*! then
return 177P*1 || oP-L

else
return tt

endif

endfunction sat_s

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

306

function subs_s(ts, tt, n)
t « (tsp.; || ts) - (ttyq || tt)
return sat_s(t, n+l, n)
endfunction subs_s

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 307

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Saturated Subtract of Unsigned Values

SUBS_U.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 001 of wt ws wd 010001
6 3 2 5 5 5 6

Format: SuBs U.df
SUBS U.B wd,ws,wt
SUBS U.H wd,ws,wt
SUBS U.W wd,ws,wt
SUBS U.D wd,ws,wt

Purpose: Vector Unsigned Saturated Subtract of Unsigned Values

Vector subtraction from vector saturating the result as unsigned value.

Description: wd[i] « saturate unsigned(unsigned(ws[i]) - unsigned(wt[i]))

MSA
MSA
MSA
MSA

The elementsin vector wt are subtracted from the el ements in vector ws. Unsigned arithmetic is performed and under-

flows clamp to O before writing the result to vector wd.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SUBS_U.B
for i in 0 .. WRLEN/8-1
WR [Wd] 81i+7..81 <« Subs_u (WR [WS] 8i+7..817 WR [Wt] 81+7..817
endfor
SUBS_U.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ subs_u(WRI[wS]igi,15. 161, WRIWEI 161,15, 161+
endfor
SUBS_U.W
for i in 0 .. WRLEN/32-1
WR [wd] 351431, .321 ¢ subs_u(WRI[wsS]3pi,31. 321, WRIWEI35i,31. 321
endfor
SUBS U.D
for i in 0 .. WRLEN/64-1

WR [wd] 641463, 641 ¢ Subs_u(WRI[wSlgsi,63. 6a1r WRIWEIgaii63. 6ai-

endfor

function sat_u(tt, n, b)
if tty; p # 0°° then
return 0™ || 1P
else
return tt
endif
endfunction sat_u

function subs u(ts, tt, n)
t « (0 |] ts) - (0 || tt)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

308

if €, =0
return sat_u(t, n+l, n)
else
return 0
endfunction subs_u

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 309

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Unsigned Saturated Subtract of Signed from Unsigned

SUBSUS_U.df

31 26 25 23 22 21 20 16 15 11 10 0
MSA 3R
011110 010 of wt ws wd 010001
6 3 2 5 5 5 6

Format: sSuBsus U.df
SUBSUS U.B wd,ws,wt
SUBSUS U.H wd,ws,wt
SUBSUS U.W wd,ws,wt
SUBSUS U.D wd,ws,wt

Purpose: Vector Unsigned Saturated Subtract of Signed from Unsigned

MSA
MSA
MSA
MSA

Vector subtraction of signed values from unsigned values saturating the results as unsigned values.

Description: wd[i] « saturate unsigned(unsigned (ws[i]) - signed(wt[i]))

The signed elements in vector wt are subtracted from the unsigned elements in vector ws. The signed result is

unsigned saturated and written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SUBSUS_U.B
for i in 0 .. WRLEN/8-1
WR([wd] g;,7. . gi ¢ subsus u(WR[wslgi,7; g1, WRIWElgi,7 gi,s
endfor
SUBSUS U.H
for i in 0 .. WRLEN/16-1
WR[wd] 161415..161 ¢ subsus_u(WRIwWSligi 5. 161, WRIWE] 165,15, 161/
endfor
SUBSUS U.W
for i in 0 .. WRLEN/32-1
WR [wd] 355,31, 321 ¢ subsus_u(WRI[wWS]3pi,31. 321, WRIWEI35i,31. 321
endfor
SUBSUS_U.D
for i in 0 .. WRLEN/64-1

WR[wdl 641463, 641 ¢ sSubsus_u(WRIwSlgaii63. . 62ir WRIWE]gaiie3. 6aiy

endfor

function sat_u(tt, n, b)
if tty; p # 0°° then
return 0™ || 1P
else
return tt
endif
endfunction sat_u

function subsus ul(ts, tt, n)
t « (0 || ts) - (tty; || tt)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

16)

32)

64)

310

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

if €, =0
return sat_u(t, n+l, n)
else
return 0
endfunction subsus_u

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 311

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Signed Saturated Subtract of Unsigned Values

SUBSUU_S.df

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 o1l of wt ws wd 010001
6 3 2 5 5 5 6

Format: sSuBSuU s.df
SUBSUU_S.B wd,ws,wt
SUBSUU_S.H wd,ws,wt
SUBSUU_S.W wd,ws,wt
SUBSUU_S.D wd,ws,wt

Purpose: Vector Signed Saturated Subtract of Unsigned Values

Vector subtraction from vector of unsigned values saturating the results as signed values.

Description: wd[i] « saturate signed(unsigned(ws([i]) - unsigned(wt[i]))

MSA
MSA
MSA
MSA

The unsigned elements in vector wt are subtracted from the unsigned elements in vector ws. The signed result is

signed saturated and written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SUBSUU_S.B
for i in 0 .. WRLEN/8-1
WR [wd] 8i+7..81 < subsuu_s (WR [ws] 81i+7..817
endfor
SUBSUU_S.H
for i in 0 .. WRLEN/16-1
WR [wd] 145415, 161 ¢ subsuu_s (WRI[ws]igi,15
endfor
SUBSUU_S.W
for i in 0 .. WRLEN/32-1
WR [wd] 355,31, 3251 ¢ subsuu_s(WRI[wslisi,31
endfor
SUBSUU_S.D
for i in 0 .. WRLEN/64-1
WR [wdl 643163, 641 ¢ Subsuu_s (WR([ws]gsi.63
endfor

function sat_s(tt, n, b)
if tty,, = 0 and tt, ; p.; # 0% P then

return 0™P*1 || 1P-1

endif

if tt, , = 1 and tty, ; ., # 1°P*! then
return 177P*1 || oP-L

else
return tt

endif

endfunction sat_s

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

..ledir

..321r

..641r

WR[wtlgi,y, gis

WR [wt]i6is1s

WR [wt] 321431

WR [Wt] 64563

16)

32)

64)

312

function subsuu_s(ts, tt, n)
t « (0 |] ts) - (0 || tt)
return sat_s(t, n+l, n)

endfunction subsuu_s

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 313

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Subtract SUBV.df

31 26 25 23 22 21 20 16 15 11 10 6 5
MSA 3R
011110 001 of wt ws wd 001110
6 3 2 5 5 5 6

Format: suBv.df
SUBV.B wd,ws,wt
SUBV.H wd,ws,wt
SUBV.W wd,ws,wt
SUBV.D wd,ws,wt

Purpose: Vector Subtract

Vector subtraction from vector.

Description: wd[i] <« ws[i] - wt[i]

The elementsin vector wt are subtracted from the elementsin vector ws. The result is written to vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SUBV.B
for i in 0 .. WRLEN/8-1
WR[wdlgi,7, gi < WRIWSlgi,g g3 - WRIWElgi,7 g1
endfor
SUBV.H
for i in 0 .. WRLEN/16-1
WR WAl 161415, 161 ¢ WRIWS]igi,15. 161 - WRIWEI 635415, 161
endfor
SUBV.W
for i in 0 .. WRLEN/32-1
WR[wd] 355,31, .321 ¢ WRIwWSl35i,31. 321 - WRIwElsni,31. 301
endfor
SUBV.D
for i in 0 .. WRLEN/64-1
WR WAl gai463..6a1 ¢ WRIWSlgaii63. 641 - WRIWEIgaii63. 641
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MSA
MSA
MSA
MSA

314

Immediate Subtract SUBVL.df

31 26 25 23 22 21 20 16 15 11 10 6 5 0
MSA I5
011110 001 of us ws wd 000110
6 3 2 5 5 5 6

Format: SUBVI.df

SUBVI.B wd,ws,u5 MSA
SUBVI.H wd,ws,u5 MSA
SUBVI.W wd,ws,u5 MSA
SUBVI.D wd,ws,u5 MSA

Purpose: |mmediate Subtract

Immediate subtraction from vector.

Description: wd[i] « ws[i] - u5

The 5-bit immediate unsigned value u5 is subtracted from the elements in vector ws. The result is written to
vector wd.

The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:
SUBVI.B
t « 0% || us, o
for i in 0 .. WRLEN/8-1
WR[wdlgi,7, gi < WR[wWSlgj,7 gi - €
endfor
SUBVI.H
t « o' || us, ,
for i in 0 .. WRLEN/16-1
WR[wd] 161415, 161 ¢ WRIWSlj4i,15. 161 - €
endfor
SUBVI.W
t « 027 || us, ,
for i in 0 .. WRLEN/32-1
WR[wdl 323431, 321 ¢ WRIwslzpi,37. 321 - €
endfor
SUBVI.D
t « 0°° || us, ,
for i in 0 .. WRLEN/64-1
WR[wdlgsi463. 621 ¢ WRIWSlggii63. 641 - €
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 315

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Data Preserving Shuffle

31 26 25 23 22 21 20 16 15 11 10
MSA 3R
011110 000 of wt ws wd 010101
6 3 2 5 5 5 6

Format: VSHF.df
VSHF.B wd,ws,wt
VSHF.H wd,ws,wt
VSHF.W wd,ws,wt
VSHF.D wd,ws,wt

Purpose: Vector Data Preserving Shuffle

Vector elements selective copy based on the control vector preserving the input data vectors.

Description: wd « vector shuffle(control (wd), ws, wt)

VSHF.df

MSA
MSA
MSA
MSA

The vector shuffle instructions selectively copy data elements from the concatenation of vectorsws and wt into

vector wd based on the corresponding control element in wd.

The least significant 6 bitsin wd control elements modulo the number of elements in the concatenated vectors ws, wt
specify the index of the source element. If bit 6 or bit 7 is 1, there will be no copy, but rather the destination element

issetto 0.
The operands and results are values in integer data format df.

Restrictions:

No data-dependent exceptions are possible.

Operation:

VSHF .B
v « WR[ws] || WRI[wt]
for i in 0 .. WRLEN/8-1
k < WR[wdlgi,s g; mod (WRLEN/4)
if WR[wdlgi,7 .gis¢ # O then
WR([wdlgi,7. gi < O
else
WR[wdlgis7. .81 € Vak+7..8k
endif
endfor

VSHF .H
v « WR[ws] || WRI[wt]
for i in 0 .. WRLEN/16-1
kK « WR[wd]igi,s 165 mod (WRLEN/8S)
if WR[wd]i6i47. 16146 #0 then
WR[wd] 161415, 161 ¢ O
else
WR WAl 161415..161 € Viek+1s5..16k
endif
endfor

VSHF . W
v ¢ WR[ws] || WRI[wt]
for 1 in 0 .. WRLEN/32-1
k < WR[wd]s3,i,5 355 mod (WRLEN/16)

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

316

if WRIwdl3zi47. 32146 # O then
WR([wdl33i,31. 321 < O

else
WR([wAl32i,31. 321 ¢ Vazke31..32k
endif
endfor
VSHF .D
Vv « WR[ws] || WRI[wt]
for i in 0 .. WRLEN/64-1

k « WR[WA]lgai,s gai mod (WRLEN/32)

if WR[wdlgsis7. 64i46 # O then
WR[Wdlggii63. 641 < O

else

WR WAl gait63..641 < Veaks+63..64k
endif

endfor

Exceptions:
Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 317

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Vector Logical Exclusive Or XOR.V

31 26 25 21 20 16 15 11 10 6 5 0
MSA VEC
011110 00011 wt ws wd 011110
6 5 5 5 5 6

Format: XOR.V

XOR.V wd,ws,wt MSA
Purpose: Vector Logical Exclusive Or
Vector by vector logical exclusive or.

Description: wd « ws XOR wt

Each bit of vector ws is combined with the corresponding bit of vector wt in a bitwise logical XOR operation. The
result is written to vector wd.

The operands and results are bit vector values.

Restrictions:

No data-dependent exceptions are possible.

Operation:

WR [wd] <« WR[ws] xor WR[wt]

Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 318

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Immediate Logical Exclusive Or XORI.B

31 26 25 24 23 16 15 11 10 6 5 0
MSA . 18
011110 u 18 ws wd 000000
6 2 8 5 5 6

Format: XORI.B

XORI.B wd,ws, 18 MSA
Purpose: Immediate Logical Exclusive Or
Immediate by vector logical exclusive or.

Description: wd[i] <« ws[i] XOR i8

Each byte element of vector ws is combined with the 8-bit immediate i8 in a bitwise logical XOR operation. The
result is written to vector wd.

The operands and results are values in integer byte data format.

Restrictions:

No data-dependent exceptions are possible.

Operation:
for i in 0 .. WRLEN/8-1
WR [Wd] 8i+7..81 <« WR[WS] 8i+7 - .81 xor i87..0
endfor
Exceptions:

Reserved Instruction Exception, MSA Disabled Exception.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 319

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Appendix A

Vector Registers Partitioning

MSA allows for multi-threaded implementations with fewer than 32 physical vector registers per hardware thread
context. The thread contexts have access to as many vector registers as needed. When the hardware runs out of physi-
cal registers, the OS re-schedul es the running threads or processes to accommodate for the pending requests.

The OSisresponsible for saving and restoring the vector registers on software context switching. The actual mapping
of the physical registers to the thread contexts is managed by the hardware itself and it istotaly invisible to the soft-
ware.

An overview of the this processis presented in the following sections. The hardware/software interface used for vec-
tor register allocation and software context switching relies on the MSA control registers and the MSA Access Dis-
abled Exception, all described in Section 3.4 “MSA Control Registers’ and Section 3.5 “Exceptions”.

A.1 Vector Registers Mapping

L et’s assume an implementation with 4 hardware thread contextstcy, ..., tcs, and 64 physical vector registerspvg, ...,
pves. Each hardware thread context has its own set of MSA control registers.

The hardware maintains a look-up table with the mapping of the 64 physical registers to any of the architecturally

defined 32 vector registers WO, ..., W31 usable from within the 4 hardware thread contexts. Hypothetically, the
look-up table could be as shown in Table A.1.

Table A.1 Physical-to-Thread Context Vector Register Mapping (Hardware Internal)

Physical Hardware Architecture
Register Thread Context Register
pvo tcy W5
pvy tcy WO
pvy none N/A
pvy tcy W2
PVe3 none N/A

The OS grants a vector register to a hardware thread context by writing the register index to MSAMap. The success-
ful mapping is confirmed in MSAAccess. For example, on writing 1 to MSAMap, the hardware finds a free physical

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 320

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

A.2 Saving/Restoring Vector Registers on Context Switch

register, mapsit to W1 for tc,, and updatesitsinternal look-up table (see Table A.2). Now that the context tc, already
using W2 is being granted access to vector register is W1, the tcg MSAAccess control register changes from
0x00000004 (only MSAAccessyy, bit set) to 0x00000006 (now MSAAccess,y, and MSAAccessyy, bits are set).

If the hardware runs out of physical vector registers to map, the MSAAccess does not change. To confirm the avail-
ability, the OS should read back and check MSAAccess.

Table A.2 Updated Physical-to-Thread Context Vector Register Mapping (Hardware Internal)

Physical Hardware Architecture
Register Thread Context Register
pvg tcs W5
pvy tcy WO
pv2 tCo Wik
pvy tcy W2
PVe3 none N/A

1. Updated entry.

A.2 Saving/Restoring Vector Registers on Context Switch

Using the above hardware implementation, i.e. 4 thread contexts tc, ..., tcs, and 64 physical vector registers pvy, ...,
Ppvga, the OS manages the context switching for a set of software threads, s, ..., S1g, S11, S12, ... Two look-up tables

are used for this purpose: one with the status of the software context mapping and previously saved vector registers
(Table A.3) and the second with the vector register usage for each software thread (Table A.4).

Table A.3 and Table A.4 show software thread s, on thread context tcg using vector register W2. The other running
thread is s;4 on tcz using WO and W5. The hardware view of this configuration has been presented abovein Table
A.l InTable A.3, thread s, is waiting to be scheduled and has vector register W1 saved from a previous run.

Table A.3 Context Mapping Table (OS Internal)

Saved Saved
Software Hardware Registers Registers
Thread Thread Context Status (Hex Mask) (Register List)
S10 tcy running on 0x00000000 none
S11 tcs running on 0x00000000 none
S12 N/A waiting 0x00000002 w1l

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12

321

Vector Registers Partitioning

Table A.4 Register Usage Table (OS Internal)

Software Hardware MSAAccess MSAAccess
Thread Thread Context| (Hex Mask) (Register List)
S10 tco 0x00000004 w2
Sy tcs 0x00000021 WO, W5

Let's suppose there is context switch between s, and s;, on tcy. What the OS does isto start running s;, on tcg with-
out changing the current tcg MSAAccess, but setting in MSASave all the bits set in either MSAAccess or inthe s,
saved registers mask. Therefore MSASave has two bits set: MSASave,y, and MSASavey;, which alows for sav-
ing W2 register used by s, and restoring W1 register already saved for s;, when thisregister is requested.

If the first MSA instruction s;»/tcy runs writes vector register W2 and reads vector register W1, the hardware sets
MSARequesty,;, MSARequestyy, and signals the MSA Access Disabled Exception. The exception is signaled
because W2 needs to be saved, i.e. MSASave,y, is set, and W1 isnot availablei.e. MSAAccess,y, isclear. Then,
the OS will take the following actions:

* Save W2 because MSASave,y, is set. From the register usage Table A.4 it is known that tcy/W2 belongs to sy.
Saving W2 requires a vector store followed by setting bit 2 in Saved Registers Mask of s,q, and clearing the
MSAsavewz.

* Request anew physical vector register for W1 by writing 1 to MSAMap.

* Restorethe previous W1 used by s;, according to the Saved Registers Mask in Table A.3. Restoring W1 requires
avector load followed by clearing MSASave,y ;. Because W1 has been written, the hardware will set

» Clear MSAModifyyy; because the restored W1 is not changed with respect of the saved value. In this context, the
S1, Saved Registers Mask bit W1 isstill relevant and should be preserved as set.

Table A.5 and Table A.6 show the software context mapping / saved registers and the vector register usage |ook-up
tables after these updates.

Table A.5 Updated Context Mapping Table (OS Internal)

Saved Saved
Software Hardware Registers Registers
Thread Thread Context Status (Hex Mask) (Register List)
S10 N/A waiting (0x00000004 w2t
S11 tcs running on 0x00000000 none
Sio tcy running on 0x00000002 w1
322 MIPS® Architecture for Programmers Volume [V-j: The MIPS32® SIMD Architecture Module, Revision 1.12

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

1. Updated entry.

A.3 Re-allocating Physical Vector Registers

Table A.6 Updated Register Usage Table (OS Internal)

Software Hardware MSAAccess MSAAccess
Thread Thread Context| (Hex Mask) (Register List)
Sy tcs 0x00000021 WO, W5
S12 tco 0x00000006 W1, w2t

1. Updated entry, s, changed to s;».

A.3 Re-allocating Physical Vector Registers

A physical register is mapped to a thread context/architecture register by writing the architecture register index to
MSAMap. It is not relevant if the software knows what the particular mapping is— it can always access the same
register from the same hardware thread context.

Physical vector registers re-allocation from one software thread to another on the same thread context (intrare-alloca-
tion) is done by setting the corresponding bitsin the MSASave control register. If the new software thread starts with
MSASave being identical to MSAAccess, it is guaranteed all vector registers used by the new software thread are
properly saved/restored. An example of this procedure is presented above in Section A.2 “Saving/Restoring V ector
Registers on Context Switch”.

Inter-thread contexts physical vector registers re-allocation (between different hardware thread contexts), mandates
the owner thread context to save all the registersintended for re-allocation and unmap them by writing the corre-
sponding indexes to MSAUnmap. To exemplify, let’s start from the configuration shown in Table A.5/ Table A.6
(OSview) and Table A.2 (hardware view). If the software decides to free up vector register WO on tcy when re-sched-
uling s;4, then it saves WO, marks WO as saved for s;4, and writes 0 to MSAUnmap. Then, the hardware will mark
pvy, i.e. the hypothetical mapping in Table A.2 used for WO/tc, asfree. In adifferent thread context, let’s say tc,, the
software could now map a new vector register, e.g. W9, and if the hardware decides pv, is the next free register, pv,
will be used by tc, for W9.

A.4 Heuristic for Vector Register Allocation

The performance of a multithreaded MSA implementation with less than 32 vector registers per thread context
depends the actual register usage at run-time and the OS scheduling strategy.

In atypical application, one software thread might use lots of vector registers for longer time, while the other threads
sporadically use very few. The OS could schedule the most demanding software thread on the same thread context,
while time-sharing another context for the software threads with a lighter usage pattern.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 323

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Appendix B

Revision History

Revision Date Description
1.00 December 12, 2012 * MIPS Architecture Release 5.
101 February 8, 2013 » Signaling NaN definition, non-trapping exception pseudocode clarification.

» LDX/STX pseudocode typo fix.

» FLOG2 description clarification.

* Typo fix for 64-bit GPR-based instructions.

» Reserved df/n values for elements outside the 128-bit wide vector registers.

» Specified WRLEN constant to be 128.

» 3RF opcode table H/W vs. W/D typo fixed.

» Specified NaN propagation rule.

* FMADD/FMSUB signals Invalid for infinity * 0.

* CTCMSA/CFCMSA signal Coprocessor 0 Unusable exception for privileged MSA
control registers

* MSA instruction can not be executed when FPU is usable and operates with float-
ing-point registersin 32-bit mode.

» FTQ signalsthe Overflow exception for out of range numeric operands.

1.02 March 4, 2013 * Reset state for MSAERN bit and MSA Access, Save, Modify and Request control regis-

tersiszero.

¢ Added new instructions: INSVE, FRCP, and FRSQRT instructions.

* Specified new flush to zero control bits.

* Clarified the effects of changing FR from 0to 1 and from 1 to 0.

1.03 March 8, 2013 Specified the effect of FPR high read/write operations on the vector registers.
* Removed unused VECSS instruction format.
1.04 May 31, 2013 Fixed NX mode description to specify that the output is aways asignaling NaN value

for any floating-point exception detected when NX is set.

* Clarified address calculation for load/store instructions with no alignment restrictions.

* Flushto zerois controlled with one bit (FS) for both subnormal input operands and tiny
non-zero results.

* Clarified subnormal input operands flush to zero in compare instructions.

* FPRregistersare UNPREDICTABLE after changing FR from 0to 1 and from 1 to 0.

» Explicit MIPS Architecture Release 5 and FPU NAN2008/ABS2008 requirements.

* Renamed INSV to INSERT, SUBSS U to SUBSUU_S, and SUBUS_Sto SUBSUS U.

* New instructions (FTRUNC_S, FTRUNC_U) for floating-point to integer truncation.

» New instructions for shift right with rounding (SRAR, SRARI. SRLR, SRLRI) and hor-
izontal add/sub (HADD_S, HADD_U, HSUB_S, HSUB_U).

* Eliminated redundant floating point compare instructions FCGT, FSGT, FCGE, FSGE.

» New floating point compare instructions (FCAF, FSAF, FCUEQ, FSUEQ, FCULT,
FSULT, FCULE, FSULE, FSUN, FCOR, FSOR, FCUNE, FSUNE).

* Opcode changes for FCNE, FSNE, MUL_Q, MULR_Q, MADD_Q, MADDR_Q,
MSUB_Q, MSUBR_Q.

« Defined floating-point registers access in the context of vector registers partitioning.

* Load/store pseudocode update.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 324

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Revision Date Description

1.05 June 21, 2013 ¢ Template update to change MIPS logo and legal text to Imagination.

» Flushto zero (FS) does not apply to 16-bit float data used by format conversion instruc-
tions FEXDO, FEXUPL, and FEXUPR and to non arithmetic instruction FCLASS.

» Load/store instructions are atomic at the element level and do not guarantee any order-
ing among elements.

* Defined reserved fields as RO: read as zero and must be written as zero.

 Clarified SLD/SLDI register layout and data format.

» FRCP and FRSQRT clarifications regarding Underflow, Overflow, and Inexact signal-
ing.

1.06 August 6, 2013 » Missing immediate instructions and FM SUB added to the Instruction Set Summary.

» Explicitly defined i8 immediates as 8-bit values where the sign is not relevant.

» Typosfixed for source and destination registersin VSHF.W and COPY_S/U pseudo-
code.

* COPY_S/U.D and INSERT.D are MIPS64 instructions. Updated ELM Instruction For-
mat table accordingly.

» Added “ordered” text to the ordered floating-point compare instructions.

» Typo fixed in mulx_s/u pseudocode for bit selection.

» Changed MSA MIPS32 AFP document classto 2B.

» The default value for Underflow is the rounded result based on the rounding mode.

» Approximate reciprocal instructions FRCP and FRSQRT signal Inexact only for finite
numerical operands.

1.07 October 2, 2013 » Typo fixed in MSACSR Flags update pseudocode.

» Specified CTCM SA/CFCM SA reserved control registers behavior.

» Removed indexed load/store LDX/STX instructions.

* Introduced base architecture |eft-shift add L SA instruction.

 LDI opcode changed.

* Load/store offsets are 10-bit values in data format units.

» Branch offsets are 16 bits.

* Added signaling to quiet NaN conversion rules.

 Corrections for fixed point multiply add/sub and signed-to-unsigned saturation pseudo-
code.

* Deleted the superfluous text for multiply add/sub NaN propagation as this case is ho
exception from the general |eft-to-right rule.

1.09 December 20, 2013 * Fixed some typos in the instruction formats.
» Explicit referenced |EEE 2008 maxNum/maxNumMag and minNum/minNumMag in
FMAX/FMAX_A and FMIN/FMIN_A.
» Typosfixed in FEXUPL description and FMAX_A pseudocode.
» FCLASS pseudocode typo fixed.
» FTQ signals both the Overflow and Inexact for values outside the range.

1.10 February 7, 2014 » Expanded the text describing the NaN propagation rules.
» LD/ST descriptions show s10 offsets.
« Specified the flush-to-zero exception signaling for approximate reciprocal instructions.
* Reciprocal instructions FRCP and FRSQRT comply with the |EEE rules.

1.11 April 8, 2014 » Higher vector register bitsare UNPREDICTABLE after writing scalar float-
ing-point values.
» Reserved MSA opcodes generate MSA Disabled exception.
 Specified that the assembler syntax for the LD/ST offset isin bytes.
* Neither the base address nor the calcul ated effective LD/ST address have any alignment
restrictions.

1.12 February 3, 2016 e COPY_U.W removed from MSA32.
* Replaced u2 with sa inthe LSA description.
» Load/store atomicity is guaranteed only if the addressis element aligned.
 Fixed FFQL/FFQR scaling typo.

MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module, Revision 1.12 325

Copyright © 2016 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

	MIPS® Architecture for Programmers Volume IV-j: The MIPS32® SIMD Architecture Module
	Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions

	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The MIPS32® SIMD Architecture
	3.1 Overview
	3.2 MSA Software Detection
	3.3 MSA Vector Registers
	3.3.1 Registers Layout
	3.3.2 Floating-Point Registers Mapping

	3.4 MSA Control Registers
	3.4.1 MSA Implementation Register (MSAIR, MSA Control Register 0)
	3.4.2 MSA Control and Status Register (MSACSR, MSA Control Register 1)
	3.4.3 MSA Access Register (MSAAccess, MSA Control Register 2)
	3.4.4 MSA Save Register (MSASave, MSA Control Register 3)
	3.4.5 MSA Modify Register (MSAModify, MSA Control Register 4)
	3.4.6 MSA Request Register (MSARequest, MSA Control Register 5)
	3.4.7 MSA Map Register (MSAMap, MSA Control Register 6)
	3.4.8 MSA Unmap Register (MSAUnmap, MSA Control Register 7)

	3.5 Exceptions
	3.5.1 Handling the MSA Disabled Exception
	3.5.2 Handling the MSA Floating Point Exception
	3.5.3 NaN Propagation
	3.5.4 Flush to Zero and Exception Signaling

	3.6 Instruction Syntax
	3.6.1 Vector Element Selection
	3.6.2 Load/Store Offsets
	3.6.3 Instruction Examples

	3.7 Instruction Encoding
	3.7.1 Data Format and Index Encoding
	3.7.2 Instruction Formats
	3.7.3 Instruction Bit Encoding

	The MIPS32® SIMD Architecture Instruction Set
	4.1 Instruction Set Descriptions
	4.1.1 Instruction Set Summary by Category
	4.1.2 Alphabetical List of Instructions
	ADD_A.df
	ADDS_A.df
	ADDS_S.df
	ADDS_U.df
	ADDV.df
	ADDVI.df
	AND.V
	ANDI.B
	ASUB_S.df
	ASUB_U.df
	AVE_S.df
	AVE_U.df
	AVER_S.df
	AVER_U.df
	BCLR.df
	BCLRI.df
	BINSL.df
	BINSLI.df
	BINSR.df
	BINSRI.df
	BMNZ.V
	BMNZI.B
	BMZ.V
	BMZI.B
	BNEG.df
	BNEGI.df
	BNZ.df
	BNZ.V
	BSEL.V
	BSELI.B
	BSET.df
	BSETI.df
	BZ.df
	BZ.V
	CEQ.df
	CEQI.df
	CFCMSA
	CLE_S.df
	CLE_U.df
	CLEI_S.df
	CLEI_U.df
	CLT_S.df
	CLT_U.df
	CLTI_S.df
	CLTI_U.df
	COPY_S.df
	COPY_U.df
	CTCMSA
	DIV_S.df
	DIV_U.df
	DOTP_S.df
	DOTP_U.df
	DPADD_S.df
	DPADD_U.df
	DPSUB_S.df
	DPSUB_U.df
	FADD.df
	FCAF.df
	FCEQ.df
	FCLASS.df
	FCLE.df
	FCLT.df
	FCNE.df
	FCOR.df
	FCUEQ.df
	FCULE.df
	FCULT.df
	FCUN.df
	FCUNE.df
	FDIV.df
	FEXDO.df
	FEXP2.df
	FEXUPL.df
	FEXUPR.df
	FFINT_S.df
	FFINT_U.df
	FFQL.df
	FFQR.df
	FILL.df
	FLOG2.df
	FMADD.df
	FMAX.df
	FMAX_A.df
	FMIN.df
	FMIN_A.df
	FMSUB.df
	FMUL.df
	FRCP.df
	FRINT.df
	FRSQRT.df
	FSAF.df
	FSEQ.df
	FSLE.df
	FSLT.df
	FSNE.df
	FSOR.df
	FSQRT.df
	FSUB.df
	FSUEQ.df
	FSULE.df
	FSULT.df
	FSUN.df
	FSUNE.df
	FTINT_S.df
	FTINT_U.df
	FTQ.df
	FTRUNC_S.df
	FTRUNC_U.df
	HADD_S.df
	HADD_U.df
	HSUB_S.df
	HSUB_U.df
	ILVEV.df
	ILVL.df
	ILVOD.df
	ILVR.df
	INSERT.df
	INSVE.df
	LD.df
	LDI.df
	LSA
	MADD_Q.df
	MADDR_Q.df
	MADDV.df
	MAX_A.df
	MAX_S.df
	MAX_U.df
	MAXI_S.df
	MAXI_U.df
	MIN_A.df
	MIN_S.df
	MIN_U.df
	MINI_S.df
	MINI_U.df
	MOD_S.df
	MOD_U.df
	MOVE.V
	MSUB_Q.df
	MSUBR_Q.df
	MSUBV.df
	MUL_Q.df
	MULR_Q.df
	MULV.df
	NLOC.df
	NLZC.df
	NOR.V
	NORI.B
	OR.V
	ORI.B
	PCKEV.df
	PCKOD.df
	PCNT.df
	SAT_S.df
	SAT_U.df
	SHF.df
	SLD.df
	SLDI.df
	SLL.df
	SLLI.df
	SPLAT.df
	SPLATI.df
	SRA.df
	SRAI.df
	SRAR.df
	SRARI.df
	SRL.df
	SRLI.df
	SRLR.df
	SRLRI.df
	ST.df
	SUBS_S.df
	SUBS_U.df
	SUBSUS_U.df
	SUBSUU_S.df
	SUBV.df
	SUBVI.df
	VSHF.df
	XOR.V
	XORI.B

	Vector Registers Partitioning
	A.1 Vector Registers Mapping
	A.2 Saving/Restoring Vector Registers on Context Switch
	A.3 Re-allocating Physical Vector Registers
	A.4 Heuristic for Vector Register Allocation

	Revision History

